Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Apoptosis ; 29(3-4): 556-567, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114800

RESUMO

Cytokine release syndrome (CRS) is a great challenge for the application of anti-CD19 CAR-T cell therapy. The aim of this study was to investigate the effect of knocking down interferon gamma (IFN-γ) by shRNA as a potential strategy to reduce the cytokine storms. A newly designed short hairpin interference RNA of IFN-γ (shIFN-γ) in CD19CAR gene was constructed. Several cellular model systems of approach using Nalm-6 cell lines including Nalm-6CD19pos and Nalm-6CD19neg with or without monocytes and endothelial cells were used to analyze the different levels of cytokines after shIFN-γ-anti-CD19CAR-T cell targeted therapy. The activity of this novel CD19CAR-T was evaluated both in vitro and in NSG mouse model. The killing efficacy of shIFN-γ-anti-CD19CAR-T at the E:T ratio of 2:1 was similar to that of regular anti-CD19CAR-T at the E:T ratio of 1:1. The IFN-γ level in the shIFN-γ-anti-CD19CAR-T cell group was (2673.1 ± 307.4) pg/ml at the E:T ratio of 2:1 which was significantly lower than that ((8261.5 ± 345.5) pg/ml) in the regular anti-CD19CAR-T group at the E:T ratio of 1:1. Cytotoxicity experiments in vitro showed significantly reduced concentrations of IFN-γ, IL-6 and TNFα in the shIFN-γ-anti-CD19CAR-T cell group compared to regular anti-CD19CAR-T cell group. Both regular anti-CD19CAR and shIFN-γ-CD19CAR-T exerted bystander killing effect in vitro. We conclude that shIFN-γ-anti-CD19CAR-T cells can reduce the generation of cytokine storms without significantly compromising their therapeutic efficacy in the preclinical setting. In mouse model, 3 × 106 shIFN-γ-anti-CD19CAR-T cells/mouse generated the similar killing efficacy to that with 2 × 106 regular anti-CD19CAR-T cells/mouse.


Assuntos
Citocinas , Interferon gama , Animais , Camundongos , Citocinas/genética , Interferon gama/genética , Síndrome da Liberação de Citocina , Células Endoteliais , Apoptose
2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 911-919, 2024 Jun.
Artigo em Zh | MEDLINE | ID: mdl-38926988

RESUMO

OBJECTIVE: To screen interleukin (IL)-1ß secretion-related membrane transporters by macrophage experiment in vitro and conventional knockout mice. METHODS: THP-1 cell line was differentiated to obtain human THP-1-derived macrophages, and the primary macrophages were obtained from human peripheral blood. FVB wild-type mice with the same sex and age were used as the controls of MRP1 knockout mice. The macrophages in abdominal cavity and bone marrow of mice were cultivated. The cells were treated with ABCC1/MRP1, ABCG2/BCRP, ABCB1/P-gp, OATP1B1, and MATE transporter inhibitors, then stimulated by lipopolysaccharide and adenosine triphosphate. The secretion level of IL-1ß was detected by ELISA, Western blot, and immunofluorescence. RESULTS: After inhibiting ABCC1/MRP1 transporter, the secretion of IL-1ß decreased significantly, while inhibition of the other 4 transporters had no effect. In animal experiment, the level of IL-1ß secreted by macrophages in bone marrow of MRP1 knockout mice was significantly lower than control group (P < 0.05). CONCLUSION: ABCC1/MRP1 transporter is a newly discovered IL-1ß secretion pathway, which is expected to become a new target for solving clinical problems such as cytokine release syndrome.


Assuntos
Regulação para Baixo , Interleucina-1beta , Macrófagos , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Animais , Humanos , Camundongos , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA