Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 13(10): 4679-84, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24024674

RESUMO

Low electrical efficiency for the lithium-oxygen (Li-O2) electrochemical reaction is one of the most significant challenges in current nonaqueous Li-O2 batteries. Here we present ruthenium oxide nanoparticles (RuO2 NPs) dispersed on multiwalled carbon nanotubes (CNTs) as a cathode, which dramatically increase the electrical efficiency up to 73%. We demonstrate that the RuO2 NPs contribute to the formation of poorly crystalline lithium peroxide (Li2O2) that is coated over the CNT with large contact area during oxygen reduction reaction (ORR). This unique Li2O2 structure can be smoothly decomposed at low potential upon oxygen evolution reaction (OER) by avoiding the energy loss associated with the decomposition of the more typical Li2O2 structure with a large size, small CNT contact area, and insulating crystals.


Assuntos
Lítio/química , Nanopartículas/química , Rutênio/química , Catálise , Fontes de Energia Elétrica , Nanotubos de Carbono/química , Oxigênio/química
2.
Nat Commun ; 7: 11591, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27172815

RESUMO

Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material.

3.
Chem Commun (Camb) ; 50(68): 9761-4, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25026112

RESUMO

Lithiated polysilane was synthesized by the mechanochemical reaction of layered polysilane with metallic lithium. The resulting dark green powder formed a Si-Li bond on the surface and demonstrated electroconductivity.

4.
Sci Rep ; 4: 7127, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25410536

RESUMO

The application of conventional solid polymer electrolyte (SPE) to lithium-oxygen (Li-O2) batteries has suffered from a limited active reaction zone due to thick SPE and subsequent lack of O2 gas diffusion route in the positive electrode. Here we present a new design for a three-dimensional (3-D) SPE structure, incorporating a carbon nanotube (CNT) electrode, adapted for a gas-based energy storage system. The void spaces in the porous CNT/SPE film allow an increased depth of diffusion of O2 gas, providing an enlarged active reaction zone where Li(+) ions, O2 gas, and electrons can interact. Furthermore, the thin SPE layer along the CNT, forming the core/shell nanostructure, aids in the smooth electron transfer when O2 gas approaches the CNT surface. Therefore, the 3-D CNT/SPE electrode structure enhances the capacity in the SPE-based Li-O2 cell. However, intrinsic instability of poly(ethylene oxide) (PEO) of the SPE matrix to superoxide (O2(·-)) and high voltage gives rise to severe side reactions, convincing us of the need for development of a more stable electrolyte for use in this CNT/SPE design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA