Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(10): 1683-1697, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36645181

RESUMO

Membrane fusion is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. During neurotransmitter exocytosis, SNARE proteins on a synaptic vesicle and the target membrane form a complex, resulting in neurotransmitter release. N-ethylmaleimide-sensitive factor (NSF), a homohexameric ATPase, disassembles the complex, allowing individual SNARE proteins to be recycled. Recently, the association between pathogenic NSF variants and developmental and epileptic encephalopathy (DEE) was reported; however, the molecular pathomechanism of NSF-related DEE remains unclear. Here, three patients with de novo heterozygous NSF variants were presented, of which two were associated with DEE and one with a very mild phenotype. One of the DEE patients also had hypocalcemia from parathyroid hormone deficiency and neuromuscular junction impairment. Using PC12 cells, a neurosecretion model, we show that NSF with DEE-associated variants impaired the recycling of vesicular membrane proteins and vesicle enlargement in response to exocytotic stimulation. In addition, DEE-associated variants caused neurodegenerative change and defective autophagy through overactivation of the mammalian/mechanistic target of rapamycin (mTOR) pathway. Treatment with rapamycin, an mTOR inhibitor or overexpression of wild-type NSF ameliorated these phenotypes. Furthermore, neurons differentiated from patient-derived induced pluripotent stem cells showed neurite degeneration, which was also alleviated by rapamycin treatment or gene correction using genome editing. Protein structure analysis of NSF revealed that DEE-associated variants might disrupt the transmission of the conformational change of NSF monomers and consequently halt the rotation of ATP hydrolysis, indicating a dominant negative mechanism. In conclusion, this study elucidates the pathomechanism underlying NSF-related DEE and identifies a potential therapeutic approach.


Assuntos
Encefalopatias , Proteínas de Transporte Vesicular , Animais , Ratos , Proteínas de Transporte Vesicular/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Fusão de Membrana/fisiologia , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Neurotransmissores/metabolismo , Mamíferos/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
2.
J Med Genet ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960580

RESUMO

BACKGROUND: SINE-VNTR-Alu (SVA) retrotransposons move from one genomic location to another in a 'copy-and-paste' manner. They continue to move actively and cause monogenic diseases through various mechanisms. Currently, disease-causing SVA retrotransposons are classified into human-specific young SVA_E or SVA_F subfamilies. In this study, we identified an evolutionarily old SVA_D retrotransposon as a novel cause of occipital horn syndrome (OHS). OHS is an X-linked, copper metabolism disorder caused by dysfunction of the copper transporter, ATP7A. METHODS: We investigated a 16-year-old boy with OHS whose pathogenic variant could not be detected via routine molecular genetic analyses. RESULTS: A 2.8 kb insertion was detected deep within the intron of the patient's ATP7A gene. This insertion caused aberrant mRNA splicing activated by a new donor splice site located within it. Long-read circular consensus sequencing enabled us to accurately read the entire insertion sequence, which contained highly repetitive and GC-rich segments. Consequently, the insertion was identified as an SVA_D retrotransposon. Antisense oligonucleotides (AOs) targeting the new splice site restored the expression of normal transcripts and functional ATP7A proteins. AO treatment alleviated excessive accumulation of copper in patient fibroblasts in a dose-dependent manner. Pedigree analysis revealed that the retrotransposon had moved into the OHS-causing position two generations ago. CONCLUSION: This is the first report of a human monogenic disease caused by the SVA_D retrotransposon. The fact that the evolutionarily old SVA_D is still actively transposed, leading to increased copy numbers may make a notable impact on rare genetic disease research.

3.
Epilepsia ; 65(5): 1322-1332, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38470337

RESUMO

OBJECTIVE: Degree of indication for epilepsy surgery is determined by taking multiple factors into account. This study aimed to investigate the usefulness of the Specific Consistency Score (SCS), a proposed score for focal epilepsy to rate the indication for epilepsy focal resection. METHODS: This retrospective cohort study included patients considered for resective epilepsy surgery in Kyoto University Hospital from 2011 to 2022. Plausible epileptic focus was tentatively defined. Cardinal findings were scored based on specificity and consistency with the estimated laterality and lobe. The total points represented SCS. The association between SCS and the following clinical parameters was assessed by univariate and multivariate analysis: (1) probability of undergoing resective epilepsy surgery, (2) good postoperative seizure outcome (Engel I and II or Engel I only), and (3) lobar concordance between the noninvasively estimated focus and intracranial electroencephalographic (EEG) recordings. RESULTS: A total of 131 patients were evaluated. Univariate analysis revealed higher SCS in the (1) epilepsy surgery group (8.4 [95% confidence interval (CI) = 7.8-8.9] vs. 4.9 [95% CI = 4.3-5.5] points; p < .001), (2) good postoperative seizure outcome group (Engel I and II; 8.7 [95% CI = 8.2-9.3] vs. 6.4 [95% CI = 4.5-8.3] points; p = .008), and (3) patients whose focus defined by intracranial EEG matched the noninvasively estimated focus (8.3 [95% CI = 7.3-9.2] vs. 5.4 [95% CI = 3.5-7.3] points; p = .004). Multivariate analysis revealed areas under the curve of .843, .825, and .881 for Parameters 1, 2, and 3, respectively. SIGNIFICANCE: SCS provides a reliable index of good indication for resective epilepsy surgery and can be easily available in many institutions not necessarily specializing in epilepsy.


Assuntos
Seleção de Pacientes , Humanos , Feminino , Masculino , Adulto , Estudos Retrospectivos , Adulto Jovem , Pessoa de Meia-Idade , Adolescente , Eletroencefalografia/métodos , Epilepsia/cirurgia , Epilepsia/diagnóstico , Resultado do Tratamento , Criança , Estudos de Coortes , Procedimentos Neurocirúrgicos/métodos , Epilepsias Parciais/cirurgia , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/diagnóstico
4.
Pediatr Blood Cancer ; 71(7): e31043, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38679849

RESUMO

Here, we describe two patients with juvenile xanthogranuloma (JXG) manifesting with Langerhans cell histiocytosis (LCH)-associated neurodegenerative disease (ND)-like radiological findings. One patient showed typical radiological abnormalities at onset, which worsened with progressing central nervous system symptoms 7 years after LCH-oriented chemotherapy. Another showed spontaneous regression of clinical symptoms, with a transient radiological change 1 year after salvage chemotherapy for recurrence of JXG. These data regarding JXG-associated ND will facilitate future investigation of the disease, as well as development of therapeutic interventions.


Assuntos
Histiocitose de Células de Langerhans , Doenças Neurodegenerativas , Xantogranuloma Juvenil , Criança , Humanos , Lactente , Masculino , Histiocitose de Células de Langerhans/diagnóstico por imagem , Histiocitose de Células de Langerhans/patologia , Histiocitose de Células de Langerhans/complicações , Histiocitose de Células de Langerhans/tratamento farmacológico , Imageamento por Ressonância Magnética , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/complicações , Xantogranuloma Juvenil/diagnóstico por imagem , Xantogranuloma Juvenil/patologia
5.
Pediatr Transplant ; 28(1): e14659, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38012111

RESUMO

BACKGROUND: POLG is one of several nuclear genes associated with mitochondrial DNA maintenance defects and is a group of diseases caused by mitochondrial DNA deficiency that results in impaired adenosine triphosphate production and organ dysfunction. Myocerebrohepatopathy spectrum (MCHS) is the most severe and earliest presentation of POLG mutations, and liver transplantation (LT) for MCHS has never been reported. CASE PRESENTATION: The patient was a 3-month-old boy with acute liver failure and no neurological manifestations (e.g., seizures). We performed a living donor LT using a left lateral segment graft from his father. The postoperative course was uneventful. Subsequently, a homozygous POLG mutation (c.2890C>T, p. R964C) was identified by multigene analysis of neonatal/infantile intrahepatic cholestasis. Moreover, respiratory chain complex I, II, and III enzyme activities and the ratio of mtDNA to nuclear DNA in the liver were reduced. Therefore, we considered that these clinical manifestations and examination findings met the definition for MCHS. During meticulous follow-up, the patient had shown satisfactory physical growth and mental development until the time of writing this report. CONCLUSION: We presumed that the absence of remarkable neurologic manifestations prior to LT in patients with MCHS is a good indication for LT and contributes to a better prognosis in the present case.


Assuntos
Falência Hepática Aguda , Transplante de Fígado , Masculino , Humanos , Recém-Nascido , Lactente , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase gama/genética , Doadores Vivos , Mutação , DNA Mitocondrial/genética
6.
J Biol Chem ; 298(9): 102342, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933014

RESUMO

Ess2, also known as Dgcr14, is a transcriptional co-regulator of CD4+ T cells. Ess2 is located in a chromosomal region, the loss of which has been associated with 22q11.2 deletion syndrome (22q11DS), which causes heart defects, skeletal abnormalities, and immunodeficiency. However, the specific association of Ess2 with 22q11DS remains unclear. To elucidate the role of Ess2 in T-cell development, we generated Ess2 floxed (Ess2fl/fl) and CD4+ T cell-specific Ess2 KO (Ess2ΔCD4/ΔCD4) mice using the Cre/loxP system. Interestingly, Ess2ΔCD4/ΔCD4 mice exhibited reduced naïve T-cell numbers in the spleen, while the number of thymocytes (CD4-CD8-, CD4+CD8+, CD4+CD8-, and CD4-CD8+) in the thymus remained unchanged. Furthermore, Ess2ΔCD4/ΔCD4 mice had decreased NKT cells and increased γδT cells in the thymus and spleen. A genome-wide expression analysis using RNA-seq revealed that Ess2 deletion alters the expression of many genes in CD4 single-positive thymocytes, including genes related to the immune system and Myc target genes. In addition, Ess2 enhanced the transcriptional activity of c-Myc. Some genes identified as Ess2 targets in mice show expressional correlation with ESS2 in human immune cells. Moreover, Ess2ΔCD4/ΔCD4 naïve CD4+ T cells did not maintain survival in response to IL-7. Our results suggest that Ess2 plays a critical role in post-thymic T-cell survival through the Myc and IL-7 signaling pathways.


Assuntos
Linfócitos T CD4-Positivos , Interleucina-7 , Proteínas Nucleares , Proteínas Proto-Oncogênicas c-myc , Transcrição Gênica , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/genética , Sobrevivência Celular , Interleucina-7/metabolismo , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Timo/citologia , Timo/imunologia
7.
Biochem Biophys Res Commun ; 615: 81-87, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35609419

RESUMO

Hepatocyte nuclear factor 4α (HNF4α) has essential roles in controlling the expression of a variety of genes involved in key metabolic pathways, including gluconeogenesis in the liver. The mechanistic and physiological significance of peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α) for HNF4α-mediated transcriptional activation models for gluconeogenic genes is well characterized. However, the transcriptional repression of HNF4α for those genes remains to be examined. In this study, we applied novel proteomic techniques to evaluate the interactions of HNF4α, including those with biochemically labile binding proteins. Based upon our experiments, we identified interferon regulatory factor 2 binding protein 2 (IRF2BP2) as a novel HNF4α co-repressor. This interaction could not be detected by conventional immunoprecipitation. IRF2BP2 repressed the transcriptional activity of HNF4α dependent on its E3 ubiquitin ligase activity. Deficiency of the IRF2BP2 gene in HepG2 cells induced gluconeogenic genes comparable to that of forskolin-treated wild-type HepG2 cells. Together, these results suggest that IRF2BP2 represents a novel class of nuclear receptor co-regulator.


Assuntos
Gluconeogênese , Fator 4 Nuclear de Hepatócito , Proteínas Correpressoras/metabolismo , Regulação da Expressão Gênica , Gluconeogênese/genética , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , Proteômica
8.
Endocr J ; 69(6): 605-612, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35474028

RESUMO

Glucose is not only the energy fuel for most cells, but also the signaling molecule which affects gene expression via carbohydrate response element binding protein (ChREBP), a Mondo family transcription factor. In response to high glucose conditions, ChREBP regulates glycolytic and lipogenic genes by binding to carbohydrate response elements (ChoRE) in the regulatory region of its target genes, thus elucidating the role of ChREBP for converting excessively ingested carbohydrates to fatty acids as an energy storage in lipogenic tissues such as the liver and adipose tissue. While the pathophysiological roles of ChREBP for fatty liver and obesity in these tissues are well known, much of the physiological and pathophysiological roles of ChREBP in other tissues such as the kidney remains unclear despite its high levels of expression in them. This review will thus highlight the roles of ChREBP in the kidney and briefly introduce the latest research results that have been reported so far.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Fatores de Transcrição , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Glucose/metabolismo , Rim/metabolismo , Fígado/metabolismo , Elementos de Resposta , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361592

RESUMO

Primary aldosteronism (PA) is considered the most common form of secondary hypertension, which is associated with excessive aldosterone secretion in the adrenal cortex. The cause of excessive aldosterone secretion is the induction of aldosterone synthase gene (CYP11B2) expression by depolarization of adrenocortical cells. In this study, we found that YM750, an Acyl-coenzyme A: cholesterol acyltransferase (ACAT) inhibitor, acts on adrenocortical cells to suppress CYP11B2 gene expression and aldosterone secretion. YM750 inhibited the induction of CYP11B2 gene expression by KCl stimulation, but not by angiotensin II and forskolin stimulation. Interestingly, YM750 did not inhibit KCl-stimulated depolarization via an increase in intracellular calcium ion concentration. Moreover, ACAT1 expression was relatively abundant in the zona glomerulosa (ZG) including these CYP11B2-positive cells. Thus, YM750 suppresses CYP11B2 gene expression by suppressing intracellular signaling activated by depolarization. In addition, ACAT1 was suggested to play an important role in steroidogenesis in the ZG. YM750 suppresses CYP11B2 gene expression and aldosterone secretion in the adrenal cortex, suggesting that it may be a potential therapeutic agent for PA.


Assuntos
Córtex Suprarrenal , Citocromo P-450 CYP11B2 , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Aldosterona/metabolismo , Aciltransferases/metabolismo , Zona Glomerulosa/metabolismo , Córtex Suprarrenal/metabolismo
10.
Biochem Biophys Res Commun ; 534: 672-679, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220920

RESUMO

Aldosterone is synthesized in the adrenal by the aldosterone synthase CYP11B2. Although the control of CYP11B2 expression is important to maintain the mineral homeostasis, its overexpression induced by the depolarization-induced calcium (Ca2+) signaling activation has been reported to increase the synthesis of aldosterone in primary aldosteronism (PA). The drug against PA focused on the suppression of CYP11B2 expression has not yet been developed, since the molecular mechanism of CYP11B2 transcriptional regulation activated via Ca2+ signaling remains unclear. To address the issue, we attempted to reveal the mechanism of the transcriptional regulation of CYP11B2 using chemical screening. We generated a cell line by inserting Nanoluc gene as a reporter into CYP11B2 locus in H295R adrenocortical cells using the CRSPR/Cas9 system, and established the high-throughput screening system using the cell line. We then identified 9 compounds that inhibited the CYP11B2 expression induced by potassium-mediated depolarization from the validated compound library (3399 compounds). Particularly, tacrolimus, an inhibitor of phosphatase calcineurin, strongly suppressed the CYP11B2 expression even at 10 nM. These results suggest that the system is effective in identifying drugs that suppress the depolarization-induced CYP11B2 expression. Our screening system may therefore be a useful tool for the development of novel medicines against PA.


Assuntos
Citocromo P-450 CYP11B2/antagonistas & inibidores , Citocromo P-450 CYP11B2/genética , Edição de Genes/métodos , Ensaios de Triagem em Larga Escala/métodos , Córtex Suprarrenal/efeitos dos fármacos , Córtex Suprarrenal/metabolismo , Aldosterona/biossíntese , Sequência de Bases , Sinalização do Cálcio , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Hiperaldosteronismo/tratamento farmacológico , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esteroide 11-beta-Hidroxilase/genética , Tacrolimo/farmacologia
11.
Am J Med Genet A ; 185(7): 2084-2093, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33973697

RESUMO

Nuclear factor I A (NFIA) is a transcription factor that belongs to the NFI family. Truncating variants or intragenic deletion of the NFIA gene are known to cause the human neurodevelopmental disorder known as NFIA-related disorder, but no patient heterozygous for a missense mutation has been reported. Here, we document two unrelated patients with typical phenotypic features of the NFIA-related disorder who shared a missense variant p.Lys125Glu (K125E) in the NFIA gene. Patient 1 was a 6-year-old female with global developmental delay, corpus callosum anomaly, macrocephaly, and dysmorphic facial features. Patient 2 was a 14-month-old male with corpus callosum anomaly and macrocephaly. By using Drosophila and zebrafish models, we functionally evaluated the effect of the K125E substitution. Ectopic expression of wild-type human NFIA in Drosophila caused developmental defects such as eye malformation and premature death, while that of human NFIA K125E variant allele did not. nfia-deficient zebrafish embryos showed defects of midline-crossing axons in the midbrain/hindbrain boundary. This impairment of commissural neurons was rescued by expression of wild-type human NFIA, but not by that of mutant variant harboring K125E substitution. In accordance with these in vivo functional analyses, we showed that the K125E mutation impaired the transcriptional regulation of HES1 promoter in cultured cells. Taken together, we concluded that the K125E variant in the NFIA gene is a loss-of-function mutation.


Assuntos
Predisposição Genética para Doença , Megalencefalia/genética , Fatores de Transcrição NFI/genética , Transtornos do Neurodesenvolvimento/genética , Alelos , Substituição de Aminoácidos/genética , Animais , Criança , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Modelos Animais de Doenças , Drosophila/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Lactente , Masculino , Megalencefalia/patologia , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/patologia , Peixe-Zebra/genética
12.
Endocr J ; 68(4): 441-450, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33390420

RESUMO

Angiotensin II (Ang II) is a well-known peptide that maintains the balance of electrolytes in the higher vertebrates. Ang II stimulation in the adrenal gland induces the synthesis of mineralocorticoids, mainly aldosterone, through the up-regulation of aldosterone synthase (CYP11B2) gene expression. Additionally, it has been reported that Ang II activates multiple signaling pathways such as mitogen-activated protein kinase (MAPK) and Ca2+ signaling. Although Ang II has various effects on the cellular signaling in the adrenal cells, its biological significance, except for the aldosterone synthesis, is still unclear. In this study, we attempted to search the novel target gene(s) of Ang II in the human adrenal H295R cells using a proteomic approach combined with stable isotopic labeling using amino acid in cell culture (SILAC). Interestingly, we found that Ang II stimulation elevated the expression of phosphofructokinase type platelet (PFKP) in both protein and mRNA levels. Moreover, transactivation of PFKP by Ang II was dependent on extracellular-signal-regulated kinase (ERK) 1/2 activation. Finally, we observed that Ang II treatment facilitated glucose uptake in the H295R cells. Taken together, we here identified PFKP as a novel target gene of Ang II, indicating that Ang II not only stimulates steroidogenesis but also affects glucose metabolism.


Assuntos
Córtex Suprarrenal/efeitos dos fármacos , Citocromo P-450 CYP11B2/genética , Expressão Gênica/efeitos dos fármacos , Córtex Suprarrenal/metabolismo , Angiotensina II/farmacologia , Linhagem Celular , Citocromo P-450 CYP11B2/metabolismo , Humanos , Proteômica , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
13.
BMC Pulm Med ; 21(1): 293, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530790

RESUMO

BACKGROUND: Re-expansion pulmonary edema is an uncommon complication following drainage of a pneumothorax or pleural effusion. While pneumothorax is noted to complicate COVID-19 patients, no case of COVID-19 developing re-expansion pulmonary edema has been reported. CASE REPRESENTATION: A man in his early 40 s without a smoking history and underlying pulmonary diseases suddenly complained of left chest pain with dyspnea 1 day after being diagnosed with COVID-19. Chest X-ray revealed pneumothorax in the left lung field, and a chest tube was inserted into the intrathoracic space without negative pressure 9 h after the onset of chest pain, resulting in the disappearance of respiratory symptoms; however, 2 h thereafter, dyspnea recurred with lower oxygenation status. Chest X-ray revealed improvement of collapse but extensive infiltration in the expanded lung. Therefore, the patient was diagnosed with re-expansion pulmonary edema, and his dyspnea and oxygenation status gradually improved without any intervention, such as steroid administration. Abnormal lung images also gradually improved within several days. CONCLUSIONS: This case highlights the rare presentation of re-expansion pulmonary edema following pneumothorax drainage in a patient with COVID-19, which recovered without requiring treatment for viral pneumonia. Differentiating re-expansion pulmonary edema from viral pneumonia is crucial to prevent unnecessary medication for COVID-19 pneumonia and pneumothorax.


Assuntos
COVID-19/complicações , Tubos Torácicos , Pneumotórax/terapia , Edema Pulmonar/etiologia , Adulto , COVID-19/diagnóstico , Humanos , Masculino , Radiografia Torácica , SARS-CoV-2/isolamento & purificação , Tomografia Computadorizada por Raios X
14.
Endocr J ; 67(3): 335-345, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-31813922

RESUMO

Carbohydrate response element binding protein (ChREBP), a glucose responsive transcription factor, mainly regulates expression of genes involved in glucose metabolism and lipogenesis. Recently, ChREBP is speculated to be involved in the onset and progression of diabetic nephropathy (DN). However, there exists no report regarding the localization and function of ChREBP in the kidney. Therefore, we analyzed the localization of Chrebp mRNA expression in the wild type (WT) mice kidney using laser microdissection method, and observed its dominant expression in the proximal tubules. In diabetic mice, mRNA expression of Chrebp target genes in the proximal tubules, including Chrebpß and thioredoxin-interacting protein (Txnip), significantly increased comparing with that of WT mice. Co-overexpression of ChREBP and its partner Mlx, in the absence of glucose, also increased TXNIP mRNA expression as well as high glucose in human proximal tubular epithelial cell line HK-2. Since TXNIP is well known to be involved in the production of reactive oxygen species (ROS), we next examined the effect of ChREBP/Mlx co-overexpression, in the absence of glucose, on ROS production in HK-2 cells. Interestingly, ChREBP/Mlx co-overexpression also induced ROS production significantly as well as high glucose. Moreover, both high glucose-induced increase of TXNIP mRNA expression and ROS production were abrogated by ChREBP small interfering RNA transfection. Taken together, high glucose-activated ChREBP in the renal proximal tubules induce the expression of TXNIP mRNA, resulting in the production of ROS which may cause renal tubular damage. It is therefore speculated that ChREBP is involved in the onset and progression of DN.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Túbulos Renais/metabolismo , Rim/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Humanos , Insulina/genética , Insulina/metabolismo , Rim/patologia , Túbulos Renais/patologia , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
J Neuroeng Rehabil ; 17(1): 87, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620131

RESUMO

BACKGROUND: Recently, rehabilitation robots are expected to improve the gait of cerebral palsy (CP) children. However, only few previous studies have reported the kinematic and kinetic changes by using wearable exoskeleton robots. The aim of this study was to investigate the change in gait parameters in CP children by training with the wearable robot-assisted gait training. METHODS: 10 spastic CP children with Gross Motor Function Classification Scale levels I-III completed a sham-controlled crossover randomized trial. Robot-assisted gait training (RAGT) and non-assisted gait training (NAGT) were performed on the treadmill with the Honda Walking Assist (HWA) in two different days. To examine the carry-over effect from treadmill walking to overground walking, participants also performed 5.5 m overground-walks without the HWA before and after treadmill training (pre- and post-trial). During treadmill walking, peak of both hip and knee angles were measured. Also, we calculated the limb symmetry of hip range of motion. In addition, gait speed and ground reaction force were measured in overground trials. RESULTS: The maximum hip angle on the limb with fewer hip movements, which was defined as the affected limb, showed a significant interaction between ASSIST (RAGT and NAGT) and TIME (pre- and post-trial) (p < 0.05). Limb symmetry significantly improved after RAGT (p < 0.05), but not in NAGT. Furthermore, the affected limb showed a significant increase in the positive peak of the anterior-posterior ground reaction force during 70-100% of the gait cycle (p < 0.05). However, there was no change in gait speed. CONCLUSION: By assisting the both hip movements with the HWA, maximum hip flexion and extension angle of the affected limb improved. Also, limb symmetry and propulsion force of the affected limb improved. Our results suggest that assisting both hip movements with the HWA might be an effective method for improving gait in CP children. TRIAL REGISTRATION: UMIN-CTR, UMIN000030667. Registered 3 January 2018, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000033737.


Assuntos
Paralisia Cerebral/reabilitação , Exoesqueleto Energizado , Marcha/fisiologia , Articulação do Quadril/fisiopatologia , Robótica , Fenômenos Biomecânicos , Paralisia Cerebral/fisiopatologia , Criança , Terapia por Exercício/instrumentação , Terapia por Exercício/métodos , Feminino , Humanos , Masculino , Movimento/fisiologia , Projetos Piloto , Amplitude de Movimento Articular
16.
Nephrol Dial Transplant ; 33(1): 26-33, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992095

RESUMO

BACKGROUND: Heparan sulphate proteoglycan (HSPG) is present in the glomerular basement membrane (GBM) and is thought to play a major role in the glomerular charge barrier. Reductions and structural alterations of HSPG are observed in different types of kidney diseases accompanied by proteinuria. However, their causal relations remain unknown. METHODS: We generated podocyte-specific exostosin-like 3 gene (Extl3) knockout mice (Extl3KO) using a Cre-loxP recombination approach. A reduction of HSPG was expected in the GBM of these mice, because EXTL3 is involved in its synthesis. Mice were separated into three groups, according to the loads on the glomeruli: a high-protein diet group, a high-protein and high-sodium diet group and a hyperglycaemic group induced by streptozotocin treatment in addition to maintenance on a high-protein and high-sodium diet. The urinary albumin:creatinine ratio was measured at 7, 11, 15 and 19 weeks of age. Renal histology was also investigated. RESULTS: Podocyte-specific expression of Cre recombinase was detected by immunohistochemistry. Moreover, immunofluorescent staining demonstrated a significant reduction of HSPG in the GBM. Electron microscopy showed irregularities in the GBM and effacement of the foot processes in Extl3KO. The values of the urinary albumin:creatinine ratio were within the range of microalbuminuria in all groups and did not significantly differ between the control mice and Extl3KO. CONCLUSIONS: The reduction of HSPG in the GBM did not augment urinary albumin excretion. HSPG's anionic charge appears to contribute little to the glomerular charge barrier.


Assuntos
Albuminas/metabolismo , Membrana Basal Glomerular/metabolismo , Proteoglicanas de Heparan Sulfato/deficiência , Glomérulos Renais/metabolismo , N-Acetilglucosaminiltransferases/fisiologia , Podócitos/metabolismo , Urinálise , Animais , Masculino , Camundongos , Camundongos Knockout
18.
Int J Mol Sci ; 19(5)2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29738496

RESUMO

Aldosterone is synthesized in zona glomerulosa of adrenal cortex in response to angiotensin II. This stimulation transcriptionally induces expression of a series of steroidogenic genes such as HSD3B and CYP11B2 via NR4A (nuclear receptor subfamily 4 group A) nuclear receptors and ATF (activating transcription factor) family transcription factors. Nurr1 belongs to the NR4A family and is regarded as an orphan nuclear receptor. The physiological significance of Nurr1 in aldosterone production in adrenal cortex has been well studied. However, coregulators supporting the Nurr1 function still remain elusive. In this study, we performed RIME (rapid immunoprecipitation mass spectrometry of endogenous proteins), a recently developed endogenous coregulator purification method, in human adrenocortical H295R cells and identified PARP1 as one of the top Nurr1-interacting proteins. Nurr1-PARP1 interaction was verified by co-immunoprecipitation. In addition, both siRNA knockdown of PARP1 and treatment of AG14361, a specific PARP1 inhibitor suppressed the angiotensin II-mediated target gene induction in H295R cells. Furthermore, PARP1 inhibitor also suppressed the aldosterone secretion in response to the angiotensin II. Together, these results suggest PARP1 is a prime coregulator for Nurr1.


Assuntos
Aldosterona/biossíntese , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Poli(ADP-Ribose) Polimerase-1/genética , Mapas de Interação de Proteínas/genética , Córtex Suprarrenal/citologia , Córtex Suprarrenal/metabolismo , Aldosterona/genética , Aldosterona/metabolismo , Angiotensina II/metabolismo , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Imunoprecipitação , Espectrometria de Massas , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , RNA Interferente Pequeno/genética , Zona Glomerulosa/citologia , Zona Glomerulosa/metabolismo
19.
Biochem Biophys Res Commun ; 489(1): 21-28, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28533088

RESUMO

CYP11B2 is a key enzyme involved in the synthesis of the mineralocorticoid aldosterone. CYP11B2 expression in the adrenal glands is controlled by the renin-angiotensin system (RAS), and plays an important role in the maintenance of electrolyte metabolism in higher organisms. Abnormal overexpression of CYP11B2 results in the disruption of mineral balance and can lead to hypertension. Though the molecular mechanism of the regulation of CYP11B2 expression has remained elusive, we hypothesize that compounds that prevent CYP11B2 expression could represent a novel class of antihypertensive drugs. In this study, we established a high-throughput screening system to identify such compounds, and subsequently carried out chemical screening. We found that the ubiquitin-proteasome inhibitor bortezomib could suppress CYP11B2 expression and secretion of aldosterone induced by angiotensin II (Ang II) in adrenocortical H295R cells. Moreover, bortezomib down-regulated the Cyp11b2 mRNA expression facilitated in the adrenal gland of Tsukuba hypertensive mice, resulting in subsequent lowering of their blood pressures. Furthermore, we observed the characteristic alteration of H3K27ac in the adrenal CYP11B2 gene promoter induced by Ang II stimulation, which was found to be disrupted by bortezomib. Taken together, these results suggest the possibility of developing novel antihypertensive drugs that prevent CYP11B2 expression.


Assuntos
Aldosterona/biossíntese , Bortezomib/farmacologia , Citocromo P-450 CYP11B2/biossíntese , Citocromo P-450 CYP11B2/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Angiotensina II/farmacologia , Animais , Bortezomib/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocromo P-450 CYP11B2/genética , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estrutura Molecular , Relação Estrutura-Atividade
20.
Nature ; 480(7378): 557-60, 2011 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-22121020

RESUMO

Chromatin reorganization is governed by multiple post-translational modifications of chromosomal proteins and DNA. These histone modifications are reversible, dynamic events that can regulate DNA-driven cellular processes. However, the molecular mechanisms that coordinate histone modification patterns remain largely unknown. In metazoans, reversible protein modification by O-linked N-acetylglucosamine (GlcNAc) is catalysed by two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). However, the significance of GlcNAcylation in chromatin reorganization remains elusive. Here we report that histone H2B is GlcNAcylated at residue S112 by OGT in vitro and in living cells. Histone GlcNAcylation fluctuated in response to extracellular glucose through the hexosamine biosynthesis pathway (HBP). H2B S112 GlcNAcylation promotes K120 monoubiquitination, in which the GlcNAc moiety can serve as an anchor for a histone H2B ubiquitin ligase. H2B S112 GlcNAc was localized to euchromatic areas on fly polytene chromosomes. In a genome-wide analysis, H2B S112 GlcNAcylation sites were observed widely distributed over chromosomes including transcribed gene loci, with some sites co-localizing with H2B K120 monoubiquitination. These findings suggest that H2B S112 GlcNAcylation is a histone modification that facilitates H2BK120 monoubiquitination, presumably for transcriptional activation.


Assuntos
Acetilglucosamina/metabolismo , Histonas/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Células HeLa , Histonas/química , Histonas/genética , Humanos , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA