Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(14): 9605-9613, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38427709

RESUMO

Transition metal atom (M)-encapsulating silicon cage nanoclusters (M@Si16) exhibit a superatomic nature, depending on the central M atom owing to the number of valence electrons and charge state on organic substrates. Since M@Si16 superatom featuring group 4 and 5 transition metal atoms exhibit rare-gas-like and alkali-like characteristics, respectively, group 6 transition metal atoms are expected to show alkaline earth-like behavior. In this study, M@Si16, comprising a central atom from group 6 (MVI = Cr, Mo, and W) were deposited on C60 substrates, and their electronic and chemical stabilities were investigated in terms of their charge state and chemical reactivity against oxygen exposures. In comparison to alkali-like Ta@Si16, the extent of charge transfer to the C60 substrate is approximately doubled, while the oxidative reactivity is subdued for MVI@Si16 on C60, especially for W@Si16. The results show that a divalent state of MVI@Si162+ appears on the C60 substrate, which is consistently calculated to be a symmetrical cage structure of W@Si162+ in C3v, revealing insights into the "periodic law" of M@Si16 superatoms pertaining to the characteristics of alkaline earth metals.

2.
Phys Chem Chem Phys ; 25(14): 9738-9752, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36947064

RESUMO

With the development of nanocluster (NC) synthesis methods in the gas phase, atomically precise NCs composed of a finite number of metal and semiconductor atoms have emerged. NCs are expected to be the smallest units for nanomaterials with various functions, such as catalysts, optoelectronic materials, and electromagnetic devices. The exploration of a stable NC called a magic number NC has revealed a couple of important factors, such as a highly symmetric geometric structure and an electronic shell closure, and a magic number behavior is often enhanced by mixing additional elements. A synergetic effect between geometric and electronic structures leads to the formation of chemically robust NC units called superatoms (SAs), which act as individual units assembled as thin films. The agglomeration of non-ligated bare SAs is desirable in fabricating the assembled SAs associated with intrinsic SA nature. The recent development of an intensive pulsed magnetron sputtering method opens up the scalable synthesis of SAs in the gas phase, enabling the fabrication of SA assembly coupled with the non-destructive deposition of a soft-landing technique. This perspective describes our recent progress in the investigation of the formation of binary cage SA (BCSA) assembled thin films composed of metal-atom encapsulating silicon-cage SAs (M@Si16) and germanium-cage SAs (M@Ge16), with a focus on their electrical properties associated with a conduction mechanism toward the development of new functional nanoscale materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA