Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Stroke Cerebrovasc Dis ; 33(1): 107483, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37976794

RESUMO

AIM: In this study, we investigated the effects of Dendropanax morbifera extract (DME) on neuroprotection against ischemic damage in gerbils. METHODS: DME (100 or 300 mg/kg) was orally administered to gerbils for three weeks, and 2 h after the last DME treatment, transient forebrain ischemia in the common carotid arteries was induced for 5 min. The forebrain ischemia-related cognitive impairments were assessed by spontaneous motor activity and passive avoidance test one and four days after ischemia, respectively. In addition, surviving and degenerating neurons were morphologically confirmed by neuronal nuclei immunohistochemical staining and Fluoro-Jade C staining, respectively, four days after ischemia. Changes of glial morphology were visualized by immunohistochemical staining for each marker such as glial fibrillary acidic protein and ionized calcium-binding protein. Oxidative stress was determined by measurements of dihydroethidium, O2· (formation of formazan) and malondialdehyde two days after ischemia. In addition, glutathione redox system such as reduced glutathione, oxidized glutathione levels, glutathione peroxidase, and glutathione reductase activities were measured two days after ischemia. RESULTS: Spontaneous motor activity monitoring and passive avoidance tests showed that treatment with 300 mg/kg DME, but not 100 mg/kg, significantly alleviated ischemia-induced memory impairments. In addition, approximately 67 % of mature neurons survived and 29.3 % neurons were degenerated in hippocampal CA1 region four days after ischemia, and ischemia-induced morphological changes in astrocytes and microglia were decreased in the CA1 region after 300 mg/kg DME treatment. Furthermore, treatment with 300 mg/kg DME significantly ameliorated ischemia-induced oxidative stress, such as superoxide formation and lipid peroxidation, two days after ischemia. In addition, ischemia-induced reduction of the glutathione redox system in the hippocampus, assessed two days after the ischemia, was ameliorated by treatment with 300 mg/kg DME. These suggest that DME can potentially reduce ischemia-induced neuronal damage through its antioxidant properties.


Assuntos
Isquemia Encefálica , Ataque Isquêmico Transitório , Humanos , Animais , Gerbillinae/metabolismo , Ataque Isquêmico Transitório/metabolismo , Hipocampo/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Glutationa/metabolismo , Infarto Cerebral
2.
Metab Brain Dis ; 35(2): 335-342, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31786728

RESUMO

Fat-mass and obesity-associated protein (Fto) plays important roles in energy metabolism. It also acts as a demethylase and is most abundantly found in the brain. In the present study, we examined the spatial and temporal changes of Fto immunoreactivity after five minutes of transient forebrain ischemia in the hippocampus. In the control group, Fto immunoreactivity was mainly observed in the nucleus of pyramidal cells in the CA1 and CA3 regions as well as the polymorphic layer, granule cell layer, and subgranular zone of the dentate gyrus. Fto immunoreactivity was transiently, but not significantly, increased in the hippocampal CA3 region and the dentate gyrus two days after ischemia compared to mice without ischemia in the sham-operated group. Four days after ischemia, low Fto immunoreactivity was observed in the stratum pyramidale of the CA1 region because of neuronal death, but Fto immunoreactive cells were abundantly detected in the stratum pyramidale of the CA3 region, which is relatively resistant to ischemic damage. Thereafter, Fto immunoreactivity progressively decreased in the hippocampal CA1 and CA3 regions and the dentate gyrus until ten days after ischemia. At this time-point, Fto immunoreactivity was significantly lower in the hippocampal CA1 and CA3 regions and the dentate gyrus compared to that in the sham-operated group. The reduction of Fto immunoreactive structures in the hippocampus may be associated with impairments in Fto-related hippocampal function.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/biossíntese , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Expressão Gênica , Gerbillinae , Hipocampo/patologia , Masculino
3.
Mar Drugs ; 18(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255381

RESUMO

Laminaria japonica is widely cultivated in East Asia, including South Korea. Fucoidan, a main component of L. japonica, protects neurons from neurological disorders such as ischemia and traumatic brain injury. In the present study, we examined the effects of extract from fermented L. japonica on the reduction of proliferating cells and neuroblasts in mice that were physically (with electric food shock) or psychologically (with visual, auditory and olfactory sensation) stressed with the help of a communication box. Vehicle (distilled water) or fermented L. japonica extract (50 mg/kg) were orally administered to the mice once a day for 21 days. On the 19th day of the treatment, physical and psychological stress was induced by foot shock using a communication box and thereafter for three days. Plasma corticosterone levels were significantly increased after exposure to physical stress and decreased Ki67 positive proliferating cells and doublecortin immunoreactive neuroblasts. In addition, western blot analysis demonstrated that physical stress as well as psychological stress decreased the expression levels of brain-derived neurotrophic factor (BDNF) and the number of phosphorylated cAMP response element binding protein (pCREB) positive nuclei in the dentate gyrus. Fermentation of L. japonica extract significantly increased the contents of reduced sugar and phenolic compounds. Supplementation with fermented L. japonica extract significantly ameliorated the increases of plasma corticosterone revels and decline in the proliferating cells, neuroblasts, and expression of BDNF and pCREB in the physically stressed mice. These results indicate that fermented L. japonica extract has positive effects in ameliorating the physical stress induced reduction in neurogenesis by modulating BDNF and pCREB expression in the dentate gyrus.


Assuntos
Proliferação de Células/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Fermentação , Laminaria/microbiologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação a CREB/metabolismo , Corticosterona/sangue , Giro Denteado/metabolismo , Giro Denteado/patologia , Proteínas do Domínio Duplacortina , Antígeno Ki-67/metabolismo , Laminaria/metabolismo , Masculino , Camundongos Endogâmicos ICR , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neuropeptídeos/metabolismo , Fármacos Neuroprotetores/isolamento & purificação , Fosforilação , Transdução de Sinais , Estresse Fisiológico , Estresse Psicológico
4.
Int J Mol Sci ; 21(15)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759679

RESUMO

We investigated the effects of pyridoxine deficiency on ischemic neuronal death in the hippocampus of gerbil (n = 5 per group). Serum pyridoxal 5'-phosphate levels were significantly decreased in Pyridoxine-deficient diet (PDD)-fed gerbils, while homocysteine levels were significantly increased in sham- and ischemia-operated gerbils. PDD-fed gerbil showed a reduction in neuronal nuclei (NeuN)-immunoreactive neurons in the medial part of the hippocampal CA1 region three days after. Reactive astrocytosis and microgliosis were found in PDD-fed gerbils, and transient ischemia caused the aggregation of activated microglia in the stratum pyramidale three days after ischemia. Lipid peroxidation was prominently increased in the hippocampus and was significantly higher in PDD-fed gerbils than in Control diet (CD)-fed gerbils after ischemia. In contrast, pyridoxine deficiency decreased the proliferating cells and neuroblasts in the dentate gyrus in sham- and ischemia-operated gerbils. Nuclear factor erythroid-2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF) levels also significantly decreased in PDD-fed gerbils sham 24 h after ischemia. These results suggest that pyridoxine deficiency accelerates neuronal death by increasing serum homocysteine levels and lipid peroxidation, and by decreasing Nrf2 levels in the hippocampus. Additionally, it reduces the regenerated potentials in hippocampus by decreasing BDNF levels. Collectively, pyridoxine is an essential element in modulating cell death and hippocampal neurogenesis after ischemia.


Assuntos
Isquemia Encefálica/metabolismo , Gerbillinae/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/genética , Piridoxina/metabolismo , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , Proliferação de Células/efeitos dos fármacos , Dieta , Gerbillinae/genética , Hipocampo/metabolismo , Fator 2 Relacionado a NF-E2/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Piridoxina/deficiência , Piridoxina/farmacologia
5.
Neurochem Res ; 44(2): 323-332, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30460638

RESUMO

In a previous study, we observed a significant increase in phosphoglycerate mutase 1 (PGAM1) levels after pyridoxine treatment. In the present study, we investigated the effects of PGAM1 on novel object recognition, cell proliferation, and neuroblast differentiation in the dentate gyrus. We generated a Tat-PGAM1 fusion protein to cross the blood-brain barrier and neuronal plasma membrane. We administered the Tat peptide, control-PGAM1, or Tat-PGAM1 fusion protein to 8-week-old mice once a day for 3 weeks and tested novel object recognition memory. The mice were then euthanized to conduct western blot analysis for polyhistidine expression and immunohistochemical analysis for Ki67, doublecortin, and phosphorylated cAMP response element-binding protein. Mice treated with Tat peptide showed similar exploration times for familiar and new objects and the discrimination index was significantly lower in this group than in the control group. Tat-PGAM1 moderately increased the exploration time of new objects when compared to familiar objects, while the discrimination index was significantly higher in the Tat-PGAM1-treated group, but not in the control-PGAM1-treated group, when compared with the control group. Higher PGAM1 protein expression was observed in the hippocampus of Tat-PGAM1-treated mice when compared with the hippocampi of control, Tat peptide-, and control-PGAM1-treated mice, using western blot analysis. In addition, the numbers of proliferating cells and differentiated neuroblasts were significantly lower in the Tat peptide-treated group than in the control group. In contrast, the numbers of proliferating cells and differentiated neuroblasts in the dentate gyrus were higher in the Tat-PGAM1-treated group than in the control group. Administration of Tat-PGAM1 significantly facilitated the phosphorylation of cAMP response element-binding protein in the dentate gyrus. Administration of control-PGAM1 did not show any significant effects on novel object recognition, cell proliferation, and neuroblast differentiation in the dentate gyrus. These results suggest that PGAM1 plays a role in cell proliferation and neuroblast differentiation in the dentate gyrus via the phosphorylation of cAMP response element-binding protein in the hippocampus.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fosfoglicerato Mutase/genética , Animais , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Neurônios/metabolismo , Fosforilação
6.
BMC Complement Altern Med ; 19(1): 94, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046739

RESUMO

BACKGROUND: The brain is susceptible to methylmercury toxicity, which causes irreversible damage to neurons and glia and the leaf extract Dendropanax morbifera Léveille (DML) has various biological functions in the nervous system. In this study, we examined the effects of DML on mercury-induced proliferating cells and differentiated neuroblasts. METHODS: Dimethylmercury (5 µg/kg) and galantamine (5 mg/kg) was administered intraperitoneally and/or DML (100 mg/kg) was orally to 7-week-old rats every day for 36 days. One hour after the treatment, novel object recognition test was examined. In addition, spatial probe tests were conducted on the 6th day after 5 days of continuous training in the Morris swim maze. Thereafter, the rats were euthanized for immunohistochemical staining analysis with Ki67 and doublecortin and measurement for acetylcholinesterase (AChE) activity. RESULTS: Dimethylmercury-treated rats showed reduced discrimination index in novel object recognition test and took longer to find the platform than did control group. Compared with dimethylmercury treatment alone, supplementation with DML or galatamine significantly ameliorated the reduction of discrimination index and reduced the time spent to find the platform. In addition, the number of platform crossings was lower in the dimethylmercury-treated group than in controls, while the administration of DML or galantamine significantly increased the number of crossings than did dimethylmercury treatment alone. Proliferating cells and differentiated neuroblasts, assessed by Ki67 and doublecortin immunohistochemical staining was significantly decreased in the dimethylmercury treated group versus controls. Supplementation with DML or galantamine significantly increased the number of proliferating cells and differentiated neuroblasts in the dentate gyrus. In addition, treatment with dimethylmercury significantly increased AChE activity in hippocampal homogenates, while treatment with dimethylmercury+DML or dimethylmercury+galantamine significantly ameliorated this increase. CONCLUSIONS: These results suggest that DML may be a functional food that improves dimethylmercury-induced memory impairment and ameliorates dimethylmercury-induced reduction in proliferating cells and differentiated neuroblasts, and demonstrates corresponding activation of AChE activity in the dentate gyrus.


Assuntos
Araliaceae/química , Giro Denteado/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Neurogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Memória Espacial/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Giro Denteado/citologia , Proteína Duplacortina , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Extratos Vegetais/química , Folhas de Planta/química , Ratos , Ratos Sprague-Dawley
7.
Neurochem Res ; 42(11): 3149-3159, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28770438

RESUMO

In the present study, we investigated the concentration-dependent effect of zinc (Zn) supplementation on the adult hippocampus in a high-fat diet (HFD)-fed obese mouse model. Four-weeks after HFD- and control diet (CD)-feeding, mice were provided with low (15 ppm) or high (60 ppm) doses of Zn in their drinking water for additional 4 more weeks along with their respective diets. Compared to the CD-fed mice, HFD-feeding elicited the reduction of neurogenic markers such as nestin, Ki67, doublecortin (DCX), and 5-bromo-2'-deoxyuridine (BrdU) in the dentate gyrus. Additionally, HFD-feeding reduced the levels of synaptic markers (synaptophysin and N-methyl-D-aspartate receptor) and brain-derived neurotrophic factor (BDNF), while lipid peroxidation was significantly increased in the hippocampus of HFD-fed mice. Against detrimental effects of high-dose Zn, low-dose Zn supplementation in CD-fed mice did not yield any remarkable changes in these parameters. Interestingly, administration of low doses of Zn to HFD-induced obese mice prominently ameliorated HFD-induced changes in neurogenic, synaptic plasticity markers and BDNF levels as well as lipid peroxidation in the hippocampus. In contrast, high-dose Zn supplementation in HFD-fed mice exacerbated the reduction of markers for neurogenesis and synaptic plasticity as well as BDNF levels, but not 4-HNE levels, in the hippocampus. These results suggest that low-dose Zn supplementation in obese mice could reverse the HFD-induced reduction in neurogenic and synaptic marker proteins in the hippocampus by reducing lipid peroxidation and improving BDNF expression, while high-dose Zn supplementation exacerbates the reduction of neurogenesis by affecting synaptic markers and BDNF levels in the hippocampus.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Hipocampo/metabolismo , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Zinco/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Proteína Duplacortina , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos
8.
Biochim Biophys Acta Gen Subj ; 1861(12): 3142-3153, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28935605

RESUMO

BACKGROUND: In the present study, we investigated the effects of pyridoxine on hippocampal functions and changes in protein profiles based on the proteomic approach. METHODS: Eight-week-old mice received intraperitoneal injections of physiological saline (vehicle) or 350mg/kg pyridoxine twice a day for 21days. RESULTS: Phosphoglycerate mutase 1 was up-regulated, while CB1 cannabinoid receptor-interacting protein 1 (CRIP1) was down-regulated, in the pyridoxine-treated group. Additionally, the serotonin and tyrosine hydroxylase was increased in the hippocampus of the pyridoxine-treated group than in that of the vehicle-treated group. Furthermore, discrimination indices based on the novel object recognition test were significantly higher in the pyridoxine-treated group than in the vehicle-treated group. Administration of CRIP1a siRNA significantly increases the discrimination index as well as cell proliferation and neuroblast differentiation in the dentate gyrus. In addition, the administration of rimonabant, a CB1 cannabinoid receptor antagonist, for 3weeks significantly decreased the novel object recognition memory, the tyrosine hydroxylase level, the amount of cell proliferation, and neuroblast differentiation in the dentate gyrus. Treatment with pyridoxine significantly increased novel object recognition memory, but slightly ameliorated rimonabant-induced reduction in serotonin, the tyrosine hydroxylase level, the amount of cell proliferation, and neuroblast differentiation in the dentate gyrus. CONCLUSION: These results suggest that pyridoxine promotes hippocampal functions by increasing serotonin and tyrosine hydroylase immunoreactivity in the hippocampus. This positive effect may be associated with CRIP1a and CB1 cannabinoid receptor function. GENERAL SIGNIFICANCE: Vitamin-B6 enhances hippocampal functions and this is closely associated with CRIP1a and CB1 cannabinoid receptors.


Assuntos
Proteínas de Transporte/fisiologia , Cognição/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Proteínas com Domínio LIM/fisiologia , Piridoxina/farmacologia , Receptor CB1 de Canabinoide/fisiologia , Serotonina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Hipocampo/fisiologia , Imuno-Histoquímica , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Receptor CB1 de Canabinoide/análise , Tirosina 3-Mono-Oxigenase/análise
9.
Neural Plast ; 2017: 5863258, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29391953

RESUMO

The genetic background of mice has various influences on the efficacy of physical exercise, as well as adult neurogenesis in the hippocampus. In this study, we investigated the basal level of hippocampal neurogenesis, as well as the effects of treadmill exercise on adult hippocampal neurogenesis in 9 mouse strains: 8 very commonly used laboratory inbred mouse strains (C57BL/6, BALB/c, A/J, C3H/HeJ, DBA/1, DBA/2, 129/SvJ, and FVB) and 1 outbred mouse strain (ICR). All 9 strains showed diverse basal levels of cell proliferation, neuroblast differentiation, and integration into granule cells in the sedentary group. C57BL/6 mice showed the highest levels of cell proliferation, neuroblast differentiation, and integration into granule cells at basal levels, and the DBA/2 mice showed the lowest levels. The efficacy of integration into granule cells was maximal in ICR mice. Treadmill exercise increased adult hippocampal neurogenesis in all 9 mouse strains. These results suggest that the genetic background of mice affects hippocampal neurogenesis and C57BL/6 mice are the most useful strain to assess basal levels of cell proliferation and neuroblast differentiation, but not maturation into granule cells. In addition, the DBA/2 strain is not suitable for studying hippocampal neurogenesis.


Assuntos
Hipocampo/fisiologia , Neurogênese , Condicionamento Físico Animal , Animais , Animais não Endogâmicos , Peso Corporal , Diferenciação Celular , Proliferação de Células , Ingestão de Alimentos , Masculino , Camundongos/genética , Camundongos/fisiologia , Camundongos Endogâmicos , Neurônios/fisiologia
10.
BMC Neurosci ; 17: 1, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728069

RESUMO

BACKGROUND: Nerve growth factor (NGF) is known not only as a major factor for neuronal plasticity but also as a pain stimulator. Although there have been several trials with NGF for its application in the regeneration or protection of the nervous system, the pain induced by NGF remains a challenge to be overcome. In this study, the pain induced by NGF gene therapy was evaluated. RESULTS: Vehicle or recombinant dog NGF plasmid was administered into the intrathecal space of dogs. Twenty-four hours after the vehicle or NGF plasmid inoculation, dogs were subcutaneously treated with 150 mg/kg pyridoxine every day for 7 days. For pain assessment, physical examination and electrophysiological recording were performed. Only in the vehicle-treated group, weight loss occurred, while NGF plasmid inoculation significantly improved this physical abnormalities. In the vehicle-treated group, electrophysiological recordings showed that H-reflex disappeared at 24 h after the last pyridoxine treatment. However, in the NGF plasmid inoculated group, the H-reflex were normal. In the results of immunohistochemistry, the NGF plasmid administration efficiently expressed in the dorsal root ganglia and significantly increased the pyridoxine-induced reduction of calcitonin gene-related peptide (CGRP) immunoreactive neurons, but not in substance P immunoreactive neurons, in the dorsal root ganglia. CONCLUSIONS: Given these results, we reason that NGF gene therapy in pyridoxine induced neuropathic dogs does not induce neuropathic pain with this dosage, even with increasing the expression of CGRP.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Terapia Genética , Fator de Crescimento Neural/uso terapêutico , Neuralgia/terapia , Substância P/metabolismo , Animais , Cães , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Reflexo H , Hiperalgesia/induzido quimicamente , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Medição da Dor , Piridoxina , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico
11.
Neurochem Res ; 41(4): 869-79, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26559686

RESUMO

In the present study, we investigated the protective effects of heme oxygenase (HO-1) against ischemic damage in motor neurons of the rabbit spinal cord. A PEP-1-HO-1 fusion protein was made to and confirmed the effective the penetration of HO-1 into spinal cord neurons at 8 h after treatment. Transient spinal cord ischemia was induced by occlusion of the abdominal aorta for 15 min. Vehicle (glycerol) or 0.375 mg/kg PEP-1-HO-1 was administered intraperitoneally to rabbits immediately after ischemia/reperfusion. Animals were sacrificed 15 min after reperfusion to measure lactate levels; 24 h after reperfusion to measure caspase 3 and myeloperoxidase levels, lipid peroxidation, and the activity of Cu,Zn-superoxide dismutase (SOD1) and catalase (CAT); or 72 h after reperfusion to assess neuronal survival and measure the levels of brain-derived neurotrophic factor (BDNF) in spinal cord homogenates. Administration of PEP-1-HO-1 did not significantly alter arterial blood gases (PaCO2 and PaO2), pH, or blood glucose levels before ischemia, 10 min after occlusion, or 10 min after reperfusion. Mean arterial pressure was selectively reduced 10 min after occlusion. Administration of PEP-1-HO-1 improved the rabbit Tarlov scores, and increased neuronal survival, as assessed by NeuN immunohistochemical staining 72 h after ischemia/reperfusion. In addition, administration of PEP-1-HO-1 significantly ameliorated lactate accumulation 15 min after reperfusion, and the increases in caspase 3, myeloperoxidase, and lipid peroxidation 24 h after reperfusion. PEP-1-HO-1 administration significantly mitigated the decrease in SOD1 and CAT 24 h after reperfusion, and reversed the decrease in BDNF levels in spinal cord homogenates 72 h after ischemia/reperfusion. These results suggest that PEP-1-HO-1 can protect against neuronal damage after transient spinal cord ischemia by limiting early lactic acidosis and increasing SOD1, CAT, and BDNF levels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Catalase/metabolismo , Heme Oxigenase-1/farmacologia , Neurônios Motores/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Medula Espinal/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Animais , Isquemia/metabolismo , Isquemia/patologia , Isquemia/fisiopatologia , Ácido Láctico/metabolismo , Masculino , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Coelhos , Medula Espinal/irrigação sanguínea , Medula Espinal/metabolismo , Medula Espinal/patologia , Regulação para Cima
12.
Neurochem Res ; 41(12): 3300-3307, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27743287

RESUMO

In the present study, we investigated the ability of Cu, Zn-superoxide dismutase (SOD1) to improve the therapeutic potential of adipose tissue-derived mesenchymal stem cells (Ad-MSCs) against ischemic damage in the spinal cord. Animals were divided into four groups: the control group, vehicle (PEP-1 peptide and artificial cerebrospinal fluid)-treated group, Ad-MSC alone group, and Ad-MSC-treated group with PEP-1-SOD1. The abdominal aorta of the rabbit was occluded for 30 min in the subrenal region to induce ischemic damage, and immediately after reperfusion, artificial cerebrospinal fluid or Ad-MSCs (2 × 105) were administered intrathecally. In addition, PEP-1 or 0.5 mg/kg PEP-1-SOD1 was administered intraperitoneally to the Ad-MSC-treated rabbits. Motor behaviors and NeuN-immunoreactive neurons were significantly decreased in the vehicle-treated group after ischemia/reperfusion. Administration of Ad-MSCs significantly ameliorated the changes in motor behavior and NeuN-immunoreactive neuronal survival. In addition, the combination of PEP-1-SOD1 and Ad-MSCs further increased the ameliorative effects of Ad-MSCs in the spinal cord after ischemia. Furthermore, the administration of Ad-MSCs with PEP-1-SOD1 decreased lipid peroxidation and maintained levels of antioxidants such as SOD1 and glutathione peroxidase compared to the Ad-MSC alone group. These results suggest that combination therapy using Ad-MSCs and PEP-1-SOD1 strongly protects neurons from ischemic damage by modulating the balance of lipid peroxidation and antioxidants.


Assuntos
Tecido Adiposo/citologia , Antioxidantes/metabolismo , Cisteamina/análogos & derivados , Isquemia/terapia , Transplante de Células-Tronco Mesenquimais , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Medula Espinal/irrigação sanguínea , Superóxido Dismutase-1/metabolismo , Animais , Cisteamina/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Isquemia/enzimologia , Isquemia/psicologia , Peroxidação de Lipídeos , Masculino , Células-Tronco Mesenquimais/metabolismo , Atividade Motora , Peptídeos/genética , Coelhos , Proteínas Recombinantes de Fusão/genética , Superóxido Dismutase-1/genética
13.
BMC Complement Altern Med ; 16(1): 452, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27829466

RESUMO

BACKGROUND: Cadmium leads to learning and memory impairment. Dendropanax morbifera Léveille stem extract (DMS) reduces cadmium-induced oxidative stress in the hippocampus. We investigated the effects of DMS on cadmium-induced impairments in memory in rats. METHODS: Cadmium (2 mg/kg), with or without DMS (100 mg/kg), was orally administered to 7-week-old Sprague-Dawley rats for 28 days. Galantamine (5 mg/kg), an acetylcholinesterase inhibitor, was intraperitoneally administered as a positive control. A novel-object recognition test was conducted 2 h after the final administration. Cell proliferation and neuroblast differentiation were assessed by immunohistochemistry for Ki67 and doublecortin, respectively. Acetylcholinesterase activity in the synaptosomes of the hippocampus was also measured based on the formation of 5,5'-dithio-bis-acid nitrobenzoic acid. RESULTS: An increase in the preferential exploration time of new objects was observed in both vehicle-treated and cadmium-treated rats. In addition, DMS administration increased cell proliferation and neuroblast differentiation in the dentate gyrus of vehicle-treated and cadmium-treated rats. Acetylcholinesterase activity in the hippocampal synaptosomes was also significantly higher in the DMS-treated group than in the vehicle-treated group. The effect of DMS on cadmium-induced memory impairment and cell proliferation in the hippocampus was comparable to that of galantamine. CONCLUSIONS: These results suggest that DMS ameliorates cadmium-induced memory impairment via increase in cell proliferation, neuroblast differentiation, and acetylcholinesterase activity in the hippocampus. The consumption of DMS may reduce cadmium-induced neurotoxicity in animals or humans.


Assuntos
Araliaceae/química , Cádmio/toxicidade , Hipocampo/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteína Duplacortina , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
14.
BMC Complement Altern Med ; 16(1): 431, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27809818

RESUMO

BACKGROUND: In the present study, we investigated the effects of oil products from two Allium species: Allium sativum (garlic) and Allium hookeri (Chinese chives) on cell proliferation and neuroblast differentiation in the mouse dentate gyrus. METHODS: Using corn oil as a vehicle, the essential oil from garlic (10 ml/kg), or Chinese chives (10 ml/kg) was administered orally to 9-week-old mice once a day for 3 weeks. One hour following the last treatment, a novel object recognition test was conducted and the animals were killed 2 h after the test. RESULTS: In comparison to the vehicle-treated group, garlic essential oil (GO) treatment resulted in significantly increased exploration time and discrimination index during the novel object recognition test, while Chinese chives essential oil (CO) reduced the exploration time and discrimination index in the same test. In addition, the number of Ki67-immunoreactive proliferating cells and doublecortin-immunoreactive neuroblasts significantly increased in the dentate gyrus of GO-treated animals. However, administration of CO significantly decreased cell proliferation and neuroblast differentiation. Administration of GO significantly increased brain-derived neurotrophic factor (BDNF) levels and decreased acetylcholinesterase (AChE) activity in the hippocampal homogenates. In contrast, administration of CO decreased BDNF protein levels and had no significant effect on AChE activity, compared to that in the vehicle-treated group. CONCLUSIONS: These results suggest that GO significantly improves novel object recognition as well as increases cell proliferation and neuroblast differentiation, by modulating hippocampal BDNF protein levels and AChE activity, while CO impairs novel object recognition and decreases cell proliferation and neuroblast differentiation, by reducing BDNF protein levels in the hippocampus.


Assuntos
Acetilcolinesterase/metabolismo , Allium/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Giro Denteado/química , Giro Denteado/citologia , Comportamento Exploratório/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
J Cell Mol Med ; 19(6): 1333-45, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25781353

RESUMO

Oxidative stress-induced reactive oxygen species (ROS) are responsible for various neuronal diseases. Antioxidant 1 (Atox1) regulates copper homoeostasis and promotes cellular antioxidant defence against toxins generated by ROS. The roles of Atox1 protein in ischaemia, however, remain unclear. In this study, we generated a protein transduction domain fused Tat-Atox1 and examined the roles of Tat-Atox1 in oxidative stress-induced hippocampal HT-22 cell death and an ischaemic injury animal model. Tat-Atox1 effectively transduced into HT-22 cells and it protected cells against the effects of hydrogen peroxide (H2O2)-induced toxicity including increasing of ROS levels and DNA fragmentation. At the same time, Tat-Atox1 regulated cellular survival signalling such as p53, Bad/Bcl-2, Akt and mitogen-activate protein kinases (MAPKs). In the animal ischaemia model, transduced Tat-Atox1 protected against neuronal cell death in the hippocampal CA1 region. In addition, Tat-Atox1 significantly decreased the activation of astrocytes and microglia as well as lipid peroxidation in the CA1 region after ischaemic insult. Taken together, these results indicate that transduced Tat-Atox1 protects against oxidative stress-induced HT-22 cell death and against neuronal damage in animal ischaemia model. Therefore, we suggest that Tat-Atox1 has potential as a therapeutic agent for the treatment of oxidative stress-induced ischaemic damage.


Assuntos
Apoptose/efeitos dos fármacos , Isquemia/prevenção & controle , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Animais , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Transporte de Cobre , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Produtos do Gene tat/genética , Produtos do Gene tat/metabolismo , Hipocampo/citologia , Humanos , Isquemia/fisiopatologia , Metalochaperonas/genética , Metalochaperonas/metabolismo , Metalochaperonas/farmacologia , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Chaperonas Moleculares , Atividade Motora/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Prosencéfalo/irrigação sanguínea , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
16.
Biochim Biophys Acta ; 1840(7): 2321-30, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24631653

RESUMO

BACKGROUND: Oxidative stress is a leading cause of various diseases, including ischemia and inflammation. Peroxiredoxin2 (PRX2) is one of six mammalian isoenzymes (PRX1-6) that can reduce hydrogen peroxide (H2O2) and organic hydroperoxides to water and alcohols. METHODS: We produced PEP-1-PRX2 transduction domain (PTD)-fused protein and investigated the effect of PEP-1-PRX2 on oxidative stress-induced neuronal cell death by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Western blot, immunofluorescence microscopy, and immunohistochemical analysis. RESULTS: Our data showed that PEP-1-PRX2, which can effectively transduce into various types of cells and brain tissues, could be implicated in suppressing generation of reactive oxygen species, preventing depolarization of the mitochondrial membrane, and inhibiting the apoptosis pathway in H2O2-stimulated HT22, murine hippocampal neuronal cells, likely resulting in protection of HT22 cells against H2O2-induced toxicity. In addition, we found that in a transient forebrain ischemia model, PEP-1-PRX2 inhibited the activation of astrocytes and microglia in the CA1 region of the hippocampus and lipid peroxidation and also prevented neuronal cell death against ischemic damage. CONCLUSIONS: These findings suggest that the transduced PEP-1-PRX2 has neuroprotective functions against oxidative stress-induced cell death in vitro and in vivo. GENERAL SIGNIFICANCE: PEP-1-PRX2 could be a potential therapeutic agent for oxidative stress-induced brain diseases such as ischemia.


Assuntos
Cisteamina/análogos & derivados , Proteínas de Homeodomínio/genética , Inflamação/tratamento farmacológico , Isquemia/tratamento farmacológico , Peptídeos/genética , Proteínas Recombinantes de Fusão/genética , Animais , Apoptose/genética , Astrócitos/metabolismo , Astrócitos/patologia , Região CA1 Hipocampal/metabolismo , Cisteamina/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Inflamação/patologia , Isquemia/patologia , Camundongos , Microglia/metabolismo , Microglia/patologia , Neurônios/citologia , Fármacos Neuroprotetores , Estresse Oxidativo/genética , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
17.
Neurochem Res ; 40(5): 1063-73, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25894680

RESUMO

In the present study, we investigated the effects of pioglitazone (PGZ) in the hippocampal CA1 region of low- or high-fat diet (LFD or HFD) fed gerbils after transient forebrain ischemia. After 8 weeks of LFD or HFD feeding, PGZ (30 mg/kg) was intraperitoneally administered to the gerbils, following which ischemia was induced by occlusion of the bilateral common carotid arteries for 5 min. Administration of PGZ significantly reduced the ischemia-induced hyperactivity 1 day after ischemia/reperfusion in both LFD- and HFD-fed gerbils. At 4 days after ischemia/reperfusion, the neurons were significantly reduced and microglial activation was observed in the hippocampal CA1 region in LFD- and HFD-fed gerbils. The microglial activation was more prominent in the HFD-fed gerbils compared to the LFD-fed gerbils. Administration of PGZ ameliorated ischemia-induced neuronal death and microglial activation in the hippocampal CA1 region 4 days after ischemia/reperfusion in the LFD-fed gerbils, but not in the HFD-gerbils. At 6 h after ischemia/reperfusion, tumor necrosis factor-α (TNF-α) and interlukin-1ß (IL-1ß) levels were significantly increased in the hippocampal homogenates of LFD-fed group compared to control group, and HFD feeding further increased TNF-α and IL-1ß levels. PGZ treatment significantly ameliorated the increase of TNF-α and IL-1ß levels in LFD-fed gerbils, not in the HFD-fed gerbils. At 12 h after ischemia/reperfusion, superoxide dismutase (SOD) and malondialdehyde (MDA) levels in hippocampal homogenates were significantly increased in the LFD-fed group compared to the control group, and HFD feeding significantly showed relatively reduction in SOD activity and increase in MDA level. PGZ administration significantly reduced the increase in MDA levels 12 h after ischemia/reperfusion in the LFD-fed gerbils, but not in the HFD-fed gerbils. These results suggest that PGZ ameliorates the neuronal damage induced by ischemia by maintaining the TNF-α, IL-1ß, SOD and MDA levels in LFD-fed gerbils. In addition, HFD feeding affects the modulation of these parameters in the hippocampus after transient forebrain ischemia.


Assuntos
Isquemia Encefálica/metabolismo , Região CA1 Hipocampal/metabolismo , Dieta com Restrição de Gorduras , Dieta Hiperlipídica/efeitos adversos , Hipocampo/metabolismo , Tiazolidinedionas/uso terapêutico , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Dieta com Restrição de Gorduras/tendências , Dieta Hiperlipídica/tendências , Gerbillinae , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Pioglitazona , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Tiazolidinedionas/farmacologia
18.
BMC Complement Altern Med ; 15: 247, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26201852

RESUMO

BACKGROUND: Dendropanax morbifera Léveille has been employed for the treatment of infectious diseases using folk medicine. In this study, we evaluated the antioxidant effects of a leaf extract of Dendropanax morbifera Léveille in the hippocampus of mercury-exposed rats. METHODS: Seven-week-old Sprague-Dawley rats received a daily intraperitoneal injection of 5 µg/kg dimethylmercury and/or oral Dendropanax morbifera Léveille leaf extract (100 mg/kg) for 4 weeks. Animals were sacrificed 2 h after the last dimethylmercury and/or leaf extract treatment. Mercury levels were measured in homogenates of hippocampal tissue, a brain region that is vulnerable to mercury toxicity. In addition, we measured reactive oxygen species production, lipid peroxidation levels, and antioxidant levels in these hippocampal homogenates. RESULTS: Treatment with Dendropanax morbifera Léveille leaf extract significantly reduced mercury levels in hippocampal homogenates and attenuated the dimethylmercury-induced increase in the production of reactive oxygen species and formation of malondialdehyde. In addition, this leaf extract treatment significantly reversed the dimethylmercury-induced reduction in the hippocampal activities of Cu, Zn-superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase. CONCLUSION: These results suggest that a leaf extract of Dendropanax morbifera Léveille had strong antioxidant effects in the hippocampus of mercury-exposed rats.


Assuntos
Antioxidantes/administração & dosagem , Araliaceae/química , Hipocampo/efeitos dos fármacos , Mercúrio/toxicidade , Extratos Vegetais/administração & dosagem , Animais , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Hipocampo/enzimologia , Hipocampo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Folhas de Planta/química , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
19.
J Spinal Cord Med ; 38(4): 538-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24793647

RESUMO

OBJECTIVE: To investigate the effect compound C, an adenosine monophosphate-activated kinase (AMPK) inhibitor, has on motor neurons of rabbit spinal cord after ischemia/reperfusion. DESIGN: Compound C (30 mg/kg) was administered intraperitoneally to rabbits 30 minutes before ischemia and the animals were sacrificed at 15 minutes after ischemia/reperfusion to measure lactate levels and at 72 hours after ischemia/reperfusion for morphological study. RESULTS: The administration of compound C did not produce any significant changes in physiological parameters such as pH, arterial blood gas (PaCO(2) and PaO(2)), and blood glucose in rabbit either at 10 minutes before ischemia or at 10 minutes after reperfusion. However, the administration of compound C did significantly ameliorate lactate acidosis at 15 minutes after reperfusion. In addition, the administration of compound C significantly improved the neurological scores of the rabbits and reduced the neuronal death seen in the ventral horn of their spinal cords at 72 hours after ischemia/reperfusion. CONCLUSIONS: Inhibition of AMPK can ameliorate the ischemia-induced neuronal death in the spinal cord via the reduction of early lactate acidosis.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Isquemia do Cordão Espinal/metabolismo , Corno Ventral da Medula Espinal/efeitos dos fármacos , Animais , Glicemia/metabolismo , Ácido Láctico/sangue , Masculino , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Coelhos , Isquemia do Cordão Espinal/tratamento farmacológico , Corno Ventral da Medula Espinal/metabolismo
20.
BMC Neurosci ; 15: 116, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25359614

RESUMO

BACKGROUND: Aging negatively affects adult hippocampal neurogenesis, and exercise attenuates the age-related reduction in adult hippocampal neurogenesis. In the present study, we used senescent mice induced by D-galactose to examine neural stem cells, cell proliferation, and neuronal differentiation with or without exercise treatment. D-galactose (100 mg/kg) was injected to six-week-old C57BL/6 J mice for 6 weeks to induce the senescent model. During these periods, the animals were placed on a treadmill and acclimated to exercise for 1 week. Then treadmill running was conducted for 1 h/day for 5 consecutive days at 10-12 m/min for 5 weeks. RESULTS: Body weight and food intake did not change significantly after D-galactose administration with/without treadmill exercise, although body weight and food intake was highest after treadmill exercise in adult animals and lowest after treadmill exercise in D-galactose-induced senescent model animals. D-galactose treatment significantly decreased the number of nestin (a neural stem cell marker), Ki67 (a cell proliferation marker), and doublecortin (DCX, a differentiating neuroblast marker) positive cells compared to those in the control group. In contrast, treadmill exercise significantly increased Ki67- and DCX-positive cell numbers in both the vehicle- and D-galactose treated groups. In addition, phosphorylated cAMP-response element binding protein (pCREB) and brain derived neurotrophic factor (BDNF) was significantly decreased in the D-galactose treated group, whereas exercise increased their expression in the subgranular zone of the dentate gyrus in both the vehicle- and D-galactose-treated groups. CONCLUSION: These results suggest that treadmill exercise attenuates the D-galactose-induced reduction in neural stem cells, cell proliferation, and neuronal differentiation by enhancing the expression of pCREB and BDNF in the dentate gyrus of the hippocampus.


Assuntos
Envelhecimento/fisiologia , Giro Denteado/fisiologia , Atividade Motora/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Animais , Peso Corporal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Ingestão de Alimentos , Galactose , Antígeno Ki-67/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Nestina/metabolismo , Neuropeptídeos/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA