Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 18(1): 639, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28826405

RESUMO

BACKGROUND: The metabolism of archaeal methanogens drives methane release into the environment and is critical to understanding global carbon cycling. Methanogenesis operates at a very low reducing potential compared to other forms of respiration and is therefore critical to many anaerobic environments. Harnessing or altering methanogen metabolism has the potential to mitigate global warming and even be utilized for energy applications. RESULTS: Here, we report draft genome sequences for the isolated methanogens Methanobacterium bryantii, Methanosarcina spelaei, Methanosphaera cuniculi, and Methanocorpusculum parvum. These anaerobic, methane-producing archaea represent a diverse set of isolates, capable of methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis. Assembly and analysis of the genomes allowed for simple and rapid reconstruction of metabolism in the four methanogens. Comparison of the distribution of Clusters of Orthologous Groups (COG) proteins to a sample of genomes from the RefSeq database revealed a trend towards energy conservation in genome composition of all methanogens sequenced. Further analysis of the predicted membrane proteins and transporters distinguished differing energy conservation methods utilized during methanogenesis, such as chemiosmotic coupling in Msar. spelaei and electron bifurcation linked to chemiosmotic coupling in Mbac. bryantii and Msph. cuniculi. CONCLUSIONS: Methanogens occupy a unique ecological niche, acting as the terminal electron acceptors in anaerobic environments, and their genomes display a significant shift towards energy conservation. The genome-enabled reconstructed metabolisms reported here have significance to diverse anaerobic communities and have led to proposed substrate utilization not previously reported in isolation, such as formate and methanol metabolism in Mbac. bryantii and CO2 metabolism in Msph. cuniculi. The newly proposed substrates establish an important foundation with which to decipher how methanogens behave in native communities, as CO2 and formate are common electron carriers in microbial communities.


Assuntos
Metabolismo Energético/genética , Genômica , Metano/biossíntese , Methanobacterium/genética , Methanobacterium/metabolismo , Anaerobiose , Proteínas Arqueais/metabolismo
2.
ACS Synth Biol ; 11(1): 39-45, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34979077

RESUMO

The directed evolution of proteins comprises a search of sequence space for variants that improve a target phenotype, yet identification of desirable variants is inherently limited by library size and screening ability. Selections that couple protein phenotype to cell viability accelerate identification of promising variants by depleting libraries of undesirable variants en masse. Here, we introduce GPCR-FEX, a stringent selection platform that couples G-protein coupled receptor (GPCR) signaling to expression of a fluoride ion exporter (FEX)-GFP fusion gene and concomitant cellular fluoride tolerance in yeast. The GPCR-FEX platform works to deplete inactive GPCR variants from the library prior to high-throughput fluorescence-based cell sorting for rapid, inexpensive screening of receptor libraries that sample an expanded sequence space. Using this system, FEX1 was placed under the control of either PFUS1 or PFIG1, promoters activated upon agonist binding by the native yeast GPCRs, Ste2p or Ste3p. Addition of a C-terminal degron to FEX1p enhanced the dynamic range of cell growth between agonist-treated and untreated cells. Using deep sequencing to enumerate population members, we show rapid selection of a previously engineered Ste2p receptor mutant strain over wild-type Ste2p in a model library enrichment experiment. Overall, the GPCR-FEX platform provides a mechanism to rapidly engineer GPCRs, which are important cellular sensors for synthetic biology.


Assuntos
Fluoretos , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte/metabolismo , Fluoretos/farmacologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nat Commun ; 11(1): 5459, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122649

RESUMO

Biocontainment systems are needed to neutralize genetically modified organisms (GMOs) that pose ecological threats outside of controlled environments. In contrast, benign selection markers complement GMOs with reduced fitness. Benign selection agents serve as alternatives to antibiotics, which are costly and risk spread of antibiotic resistance. Here, we present a yeast biocontainment strategy leveraging engineered fluoride sensitivity and DNA vectors enabling use of fluoride as a selection agent. The biocontainment system addresses the scarcity of platforms available for yeast despite their prevalent use in industry and academia. In the absence of fluoride, the biocontainment strain exhibits phenotypes nearly identical to those of the wildtype strain. Low fluoride concentrations severely inhibit biocontainment strain growth, which is restored upon introduction of fluoride-based vectors. The biocontainment strategy is stringent, easily implemented, and applicable to several eukaryotes. Further, the DNA vectors enable genetic engineering at reduced costs and eliminate risks of propagating antibiotic resistance.


Assuntos
Fluoretos , Proteínas de Membrana/genética , Organismos Geneticamente Modificados/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Seleção Genética , Fluoretos/metabolismo , Fluoretos/farmacologia , Engenharia Genética , Marcadores Genéticos , Saccharomyces cerevisiae/efeitos dos fármacos , Biologia Sintética/métodos
4.
Nat Commun ; 11(1): 690, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019920

RESUMO

Epistasis emerges when the effects of an amino acid depend on the identities of interacting residues. This phenomenon shapes fitness landscapes, which have the power to reveal evolutionary paths and inform evolution of desired functions. However, there is a need for easily implemented, high-throughput methods to capture epistasis particularly at distal sites. Here, we combine deep mutational scanning (DMS) with a straightforward data processing step to bridge reads in distal sites within genes (BRIDGE). We use BRIDGE, which matches non-overlapping reads to their cognate templates, to uncover prevalent epistasis within the binding pocket of a human G protein-coupled receptor (GPCR) yielding variants with 4-fold greater affinity to a target ligand. The greatest functional improvements in our screen result from distal substitutions and substitutions that are deleterious alone. Our results corroborate findings of mutational tolerance in GPCRs, even in conserved motifs, but reveal inherent constraints restricting tolerated substitutions due to epistasis.


Assuntos
Epistasia Genética , Receptores Acoplados a Proteínas G/genética , Motivos de Aminoácidos , Sítios de Ligação , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Mutação , Ligação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
5.
Metab Eng Commun ; 9: e00091, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31016136

RESUMO

Membrane-embedded transporters are crucial for the stability and performance of microbial production strains. Apart from engineering known transporters derived from model systems, it is equally important to identify transporters from nonconventional organisms that confer advantageous traits for biotechnological applications. Here, we transferred genes encoding fluoride exporter (FEX) proteins from three strains of early-branching anaerobic fungi (Neocallimastigomycota) to Saccharomyces cerevisiae. The heterologous transporters are localized to the plasma membrane and complement a fluoride-sensitive yeast strain that is lacking endogenous fluoride transporters up to 10.24 mM fluoride. Furthermore, we show that fusing an amino-terminal leader sequence to FEX proteins in yeast elevates protein yields, yet inadvertently causes a loss of transporter function. Adaptive laboratory evolution of FEX proteins restores fluoride tolerance of these strains, in one case exceeding the solute tolerance observed in wild type S. cerevisiae; however, the underlying molecular mechanisms and cause for the increased tolerance in the evolved strains remain elusive. Our results suggest that microbial cultures can achieve solvent tolerance through different adaptive trajectories, and the study is a promising step towards the identification, production, and biotechnological application of membrane proteins from nonconventional fungi.

6.
ACS Synth Biol ; 7(7): 1763-1772, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29871481

RESUMO

Membrane proteins play a valuable role in biotechnology, yet the difficulty of producing high yields of functional membrane protein limits their use in synthetic biology. The practical application of G protein-coupled receptors in whole cell biosensors, for example, is restricted to those that are functionally produced at the cell surface in the chosen host, limiting the range of detectable molecules. Here, we present a facile approach to significantly improve the yield and homogeneity of functional membrane proteins in Saccharomyces cerevisiae by altering only the choice of expression vector. Expression of a model GPCR, the human adenosine A2a receptor, from commonly used centromeric and episomal vectors leads to low yields and cellular heterogeneity due to plasmid loss in 20-90% of the cell population. In contrast, homogeneous production of GPCR is attained using a multisite integrating vector or a novel, modified high copy vector that does not require genomic integration or addition of any selection agents. Finally, we introduce a FACS-based screen, which enables rapid isolation of cells with 4- to 15-fold increases in gene dosage and up to a 9-fold increase in functional protein yield without loss of homogeneity compared to a strain isolated through conventional, low-throughput methods. These results can be extended to improve the cellular homogeneity and yield of other membrane proteins, expanding the repertoire of useful receptors for synthetic biology applications.


Assuntos
Biotecnologia/métodos , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Biologia Sintética/métodos , Receptores Acoplados a Proteínas G/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Nat Chem ; 9(6): 537-545, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28537595

RESUMO

The capability to graft synthetic polymers onto the surfaces of live cells offers the potential to manipulate and control their phenotype and underlying cellular processes. Conventional grafting-to strategies for conjugating preformed polymers to cell surfaces are limited by low polymer grafting efficiency. Here we report an alternative grafting-from strategy for directly engineering the surfaces of live yeast and mammalian cells through cell surface-initiated controlled radical polymerization. By developing cytocompatible PET-RAFT (photoinduced electron transfer-reversible addition-fragmentation chain-transfer polymerization), synthetic polymers with narrow polydispersity (Mw/Mn < 1.3) could be obtained at room temperature in 5 minutes. This polymerization strategy enables chain growth to be initiated directly from chain-transfer agents anchored on the surface of live cells using either covalent attachment or non-covalent insertion, while maintaining high cell viability. Compared with conventional grafting-to approaches, these methods significantly improve the efficiency of grafting polymer chains and enable the active manipulation of cellular phenotypes.


Assuntos
Engenharia Celular , Polimerização , Polímeros/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Comunicação Celular , Sobrevivência Celular , Células Cultivadas , Radicais Livres/química , Radicais Livres/metabolismo , Humanos , Células Jurkat , Polímeros/química , Saccharomyces cerevisiae/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA