Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(28): E4107-16, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27354517

RESUMO

ß-adrenergic receptors (ßARs) are critical regulators of acute cardiovascular physiology. In response to elevated catecholamine stimulation during development of congestive heart failure (CHF), chronic activation of Gs-dependent ß1AR and Gi-dependent ß2AR pathways leads to enhanced cardiomyocyte death, reduced ß1AR expression, and decreased inotropic reserve. ß-blockers act to block excessive catecholamine stimulation of ßARs to decrease cellular apoptotic signaling and normalize ß1AR expression and inotropy. Whereas these actions reduce cardiac remodeling and mortality outcomes, the effects are not sustained. Converse to G-protein-dependent signaling, ß-arrestin-dependent signaling promotes cardiomyocyte survival. Given that ß2AR expression is unaltered in CHF, a ß-arrestin-biased agonist that operates through the ß2AR represents a potentially useful therapeutic approach. Carvedilol, a currently prescribed nonselective ß-blocker, has been classified as a ß-arrestin-biased agonist that can inhibit basal signaling from ßARs and also stimulate cell survival signaling pathways. To understand the relative contribution of ß-arrestin bias to the efficacy of select ß-blockers, a specific ß-arrestin-biased pepducin for the ß2AR, intracellular loop (ICL)1-9, was used to decouple ß-arrestin-biased signaling from occupation of the orthosteric ligand-binding pocket. With similar efficacy to carvedilol, ICL1-9 was able to promote ß2AR phosphorylation, ß-arrestin recruitment, ß2AR internalization, and ß-arrestin-biased signaling. Interestingly, ICL1-9 was also able to induce ß2AR- and ß-arrestin-dependent and Ca(2+)-independent contractility in primary adult murine cardiomyocytes, whereas carvedilol had no efficacy. Thus, ICL1-9 is an effective tool to access a pharmacological profile stimulating cardioprotective signaling and inotropic effects through the ß2AR and serves as a model for the next generation of cardiovascular drug development.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carbazóis/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Lipopeptídeos/farmacologia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Propanolaminas/farmacologia , Antagonistas Adrenérgicos beta/uso terapêutico , Animais , Carbazóis/uso terapêutico , Carvedilol , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Lipopeptídeos/uso terapêutico , Camundongos , Cultura Primária de Células , Propanolaminas/uso terapêutico , Conformação Proteica/efeitos dos fármacos , beta-Arrestinas/agonistas
2.
J Biol Chem ; 292(9): 3947-3957, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28100775

RESUMO

Cool-associated tyrosine-phosphorylated protein 1 (Cat-1) is a signaling scaffold as well as an ADP-ribosylation factor-GTPase-activating protein. Although best known for its role in cell migration, we recently showed that the ability of Cat-1 to bind paxillin, a major constituent of focal complexes, is also essential for the anchorage-independent growth of HeLa cervical carcinoma cells. Here we set out to learn more about the underlying mechanism by which Cat-paxillin interactions mediate this effect. We show that knocking down paxillin expression in HeLa cells promotes their ability to form colonies in soft agar, whereas ectopically expressing paxillin in these cells inhibits this transformed growth phenotype. Although knocking down Cat-1 prevents HeLa cells from forming colonies in soft agar, when paxillin is knocked down together with Cat-1, the cells are again able to undergo anchorage-independent growth. These results suggest that the requirement of Cat-1 for this hallmark of cellular transformation is coupled to its ability to bind paxillin and abrogate its actions as a negative regulator of anchorage-independent growth. We further show that knocking down Cat-1 expression in HeLa cells leads to a reduction in Akt activation, which can be reversed by knocking down paxillin. Moreover, expression of constitutively active forms of Akt1 and Akt2 restores the anchorage-independent growth capability of HeLa cells depleted of Cat-1 expression. Together, these findings highlight a novel mechanism whereby interactions between Cat-1 and its binding partner paxillin are necessary to ensure sufficient Akt activation so that cancer cells are able to grow under anchorage-independent conditions.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Regulação Neoplásica da Expressão Gênica , Paxilina/metabolismo , Neoplasias do Colo do Útero/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Animais , Adesão Celular , Movimento Celular , Proliferação de Células , Ativação Enzimática , Feminino , Células HeLa , Humanos , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
3.
J Biol Chem ; 287(37): 31462-70, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22807447

RESUMO

Cat-1/Git-1 is a multifunctional protein that acts as a GTPase-activating protein (GAP) for Arf GTPases, as well as serves as a scaffold for a number of different signaling proteins. Cat-1 is best known for its role in regulating cell shape and promoting cell migration. However, whether Cat-1 might also contribute to cellular transformation is currently unknown. Here we show that ∼95% of cervical tumor samples examined overexpress Cat-1, suggesting that the up-regulation of Cat-1 expression is a frequent occurrence in this type of cancer. We demonstrate further that knocking down Cat-1 from NIH3T3 fibroblasts expressing an activated form of Cdc42 (Cdc42 F28L), or from the human cervical carcinoma (HeLa) cell line, inhibits the ability of these cells to form colonies in soft agar, an in vitro measure of tumorgenicity. The requirement for Cat-1 when assaying the anchorage-independent growth of transformed fibroblasts and HeLa cells is dependent on its ability to bind paxillin, while being negatively impacted by its Arf-GAP activity. Moreover, the co-expression of Cat-1 and an activated form of Arf6 in fibroblasts was sufficient to induce their transformation. These findings highlight novel roles for Cat-1 and its interactions with the Arf GTPases and paxillin in oncogenic transformation.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Transformação Celular Neoplásica/metabolismo , Fibroblastos/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Fibroblastos/patologia , Proteínas Ativadoras de GTPase/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Paxilina/genética , Paxilina/metabolismo , Ligação Proteica , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
4.
J Biol Chem ; 285(24): 18806-16, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20375009

RESUMO

Previously we showed that Cool-1 (Cloned out of library-1)/beta-Pix (Pak-interactive exchange factor) is phosphorylated at a specific tyrosine residue (Tyr-442) in a Src-dependent manner and serves as a dual function guanine nucleotide exchange factor (GEF)/signaling-effector for Cdc42 that is essential for transformation by Src. Here, we show that knocking-down Cool-1 or overexpressing a Cool-1 mutant that contains substitutions within its Dbl homology domain and is defective for GEF activity, inhibits Src-promoted cell migration. Similarly, the expression of a Cool-1 mutant containing a tyrosine to phenylalanine substitution at position 442, making it incapable of being phosphorylated in response to serum, epidermal growth factor (EGF), or Src, also causes a significant inhibition of the migration and invasive activity of cells expressing oncogenic Src. We further demonstrate that the phosphorylation of Cool-1 at Tyr-442 weakens its ability to bind to one of its primary interaction-partners, Cat-1 (Cool-associated tyrosine phosphosubstrate-1)/Git-1 (G protein-coupled receptor kinase-interactor-1), thus making Cat more accessible for binding to paxillin. This enables cells to alternate between states where they contain large numbers of focal complexes (i.e. conditions favoring Cool-1-Cat interactions) versus reduced numbers of focal complexes (conditions favoring Cat-paxillin interactions). Overall, these findings show that the phosphorylation-dephosphorylation cycle of Cool-1 at Tyr-442 can serve as a key regulatory signal for focal complex assembly-disassembly, and consequently, for the migration and invasive activity of Src-transformed cells.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Animais , Membrana Celular/metabolismo , Movimento Celular , Glutationa Transferase/metabolismo , Camundongos , Microscopia de Fluorescência/métodos , Mutação , Células NIH 3T3 , Invasividade Neoplásica , Fosforilação , Estrutura Terciária de Proteína , Fatores de Troca de Nucleotídeo Guanina Rho , Tirosina/química , Proteína cdc42 de Ligação ao GTP/metabolismo
5.
Trends Pharmacol Sci ; 41(6): 387-389, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32362341

RESUMO

The ability to design 'biased' drugs that selectively activate G protein-coupled receptor (GPCR) signaling pathways beneficial in treating a disease, while limiting their side effects, is of broad significance. Lee et al. move us a step closer to this important goal by identifying structural differences in the ß1-adrenoceptor in complex with ß-arrestin 1 versus a G protein-mimicking nanobody.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , beta-Arrestina 1/química , Animais , Materiais Biomiméticos/química , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Anticorpos de Domínio Único/química , beta-Arrestina 1/metabolismo
6.
Small GTPases ; 11(2): 77-85, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-28981399

RESUMO

Cool-associated tyrosine phosphorylated protein 1 (Cat1), also referred to as GPCR-kinase interacting protein 1 (Git1), is a ubiquitously expressed, multi-domain protein that is best known for regulating cell shape and migration. Cat1/Git1 functions as a GTPase activating protein (GAP) that inactivates certain members of the ADP-ribosylation factor (Arf) family of small GTPases. It is also a scaffold that brings together several signaling proteins at specific locations within the cell, ensuring their efficient activation. Here we will discuss what is known regarding the classical role of Cat1/Git1 in the regulation of cell morphology and migration, as well as highlight some more recent findings that suggest this interesting signaling/scaffolding protein may also contribute in unexpected ways to oncogenic transformation.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas de Ciclo Celular/metabolismo , Progressão da Doença , Proteínas Ativadoras de GTPase/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Humanos
7.
Sci Rep ; 5: 16704, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26576857

RESUMO

As a novel route to construct fine and abnormally high-aspect-ratio electrodes with excellent adhesion and reduced contact resistivity on a textured surface, an electrostatic-force-assisted dispensing printing technique is reported and compared with conventional dispensing and electrohydrodynamic jet printing techniques. The electrostatic force applied between a silver paste and the textured surface of a crystalline silicon solar cell wafer significantly improves the physical adhesion of the electrodes, whereas those fabricated using a conventional dispensing printing technique peel off with a silver paste containing 2 wt% of a fluorosurfactant. Moreover, the contact resistivity and dimensionless deviation of total resistance are significantly reduced from 2.19 ± 1.53 mΩ · cm(2) to 0.98 ± 0.92 mΩ · cm(2) and from 0.10 to 0.03, respectively. By utilizing electrodes with an abnormally high-aspect-ratio of 0.79 (the measured thickness and width are 30.4 µm and 38.3 µm, respectively), the cell efficiency is 17.2% on a polycrystalline silicon solar cell with an emitter sheet resistance of 60 Ω/sq. This cell efficiency is considerably higher than previously reported values obtained using a conventional electrohydrodynamic jet printing technique, by +0.48-3.5%p.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA