Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(13): e23759, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38949635

RESUMO

The epidermal growth factor receptor (EGFR) is an important target for cancer therapies. Many head and neck cancer (HNC) cells have been reported to overexpress EGFR; therefore, anti-EGFR therapies have been attempted in patients with HNC. However, its clinical efficacy is limited owing to the development of drug resistance. In this study, we developed an EGFR-targeting immunotoxin consisting of a clinically proven anti-EGFR IgG (cetuximab; CTX) and a toxin fragment (LR-LO10) derived from Pseudomonas exotoxin A (PE) using a novel site-specific conjugation technology (peptide-directed photo-crosslinking reaction), as an alternative option. The immunotoxin (CTX-LR-LO10) showed specific binding to EGFR and properties of a typical IgG, such as stability, interactions with receptors of immune cells, and pharmacokinetics, and inhibited protein synthesis via modification of elongation factor-2. Treatment of EGFR-positive HNC cells with the immunotoxin resulted in apoptotic cell death and the inhibition of cell migration and invasion. The efficacy of CTX-LR-LO10 was evaluated in xenograft mouse models, and the immunotoxin exhibited much stronger tumor suppression than CTX or LR-LO10. Transcriptome analyses revealed that the immunotoxins elicited immune responses and altered the expression of genes related to its mechanisms of action. These results support the notion that CTX-LR-LO10 may serve as a new therapeutic agent targeting EGFR-positive cancers.


Assuntos
ADP Ribose Transferases , Receptores ErbB , Exotoxinas , Neoplasias de Cabeça e Pescoço , Imunoglobulina G , Imunotoxinas , Exotoxina A de Pseudomonas aeruginosa , Fatores de Virulência , Humanos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Receptores ErbB/imunologia , Animais , Imunotoxinas/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Camundongos , Imunoglobulina G/farmacologia , Linhagem Celular Tumoral , Exotoxinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Cetuximab/farmacologia , Camundongos Nus , Toxinas Bacterianas , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Feminino , Movimento Celular/efeitos dos fármacos , Antineoplásicos/farmacologia
2.
Chem Rev ; 121(10): 6173-6245, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33886302

RESUMO

The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.


Assuntos
Aminoácidos/biossíntese , Glucosidases/metabolismo , Metaloproteínas/metabolismo , Aminoácidos/química , Biocatálise , Estrutura Molecular , Engenharia de Proteínas
3.
Electrophoresis ; 42(21-22): 2238-2245, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33314214

RESUMO

Saliva and blood plasma are non-Newtonian viscoelastic fluids that play essential roles in the transport of particulate matters (e.g., food and blood cells). However, whether the viscoelasticity of such biofluids alters the dynamics of suspended particles is still unknown. In this study, we report that under pressure-driven microflows of both human saliva and blood plasma, spherical particles laterally migrate and form a focused stream along the channel centerline by their viscoelastic properties. We observed that the particle focusing varied among samples on the basis of sampling times/donors, thereby demonstrating that the viscoelasticity of the human biofluids can be affected by their compositions. We showed that the particle focusing, observed in bovine submaxillary mucin solutions, intensified with the increase in mucin concentration. We expect that the findings from this study will contribute to the understanding of the physiological roles of viscoelasticity of human biofluids.


Assuntos
Técnicas Analíticas Microfluídicas , Animais , Células Sanguíneas , Bovinos , Elasticidade , Humanos , Tamanho da Partícula , Viscosidade
4.
Bioorg Med Chem ; 30: 115946, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360577

RESUMO

Antibody-protein conjugates have been useful tools for studying biological systems and also played important roles in developing therapeutics and diagnostics. In particular, because of the increased interest in therapeutics of complexity higher than monoclonal antibodies, various methods have been reported for generating bispecific antibodies, immunotoxins, and antibody-enzyme conjugates in which antibodies are site-specifically conjugated with other proteins. Compared with conjugating antibodies with synthetic molecules, controlling the modification sites is difficult in the antibodies conjugated with protein cargos due to the presence of several reactive groups in both molecules. Enzymatic reactions are often used to generate antibody-protein conjugates owing to their high specificity for both reactants and products. Chemical modifications involving genetic introduction of natural or unnatural amino acid residues have also been used for site-specific conjugation of antibodies. Recent studies have developed methods to modify native antibodies using peptides having affinity for antibodies, and these methods do not need antibody engineering for conjugation reactions. In this review, we have summarized enzymatic and chemical approaches to generate site-specific antibody-protein conjugates.


Assuntos
Anticorpos Monoclonais/química , Proteínas/química , Animais , Humanos
5.
Angew Chem Int Ed Engl ; 59(18): 7089-7096, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32112494

RESUMO

Here, we propose an experimental methodology based on femtosecond-resolved fluorescence spectroscopy to measure the hydrogen (H)-bond free energy of water at protein surfaces under isothermal conditions. A demonstration was conducted by installing a non-canonical isostere of tryptophan (7-azatryptophan) at the surface of a coiled-coil protein to exploit the photoinduced proton transfer of its chromophoric moiety, 7-azaindole. The H-bond free energy of this biological water was evaluated by comparing the rates of proton transfer, sensitive to the hydration environment, at the protein surface and in bulk water, and it was found to be higher than that of bulk water by 0.4 kcal mol-1 . The free-energy difference is dominated by the entropic cost in the H-bond network among water molecules at the hydrophilic and charged protein surface. Our study opens a door to accessing the energetics and dynamics of local biological water to give insight into its roles in protein structure and function.


Assuntos
Teoria da Densidade Funcional , Proteínas/metabolismo , Termodinâmica , Água/metabolismo , Ligação de Hidrogênio , Estrutura Molecular , Proteínas/química , Prótons , Espectrometria de Fluorescência , Propriedades de Superfície , Água/química
6.
Anal Chem ; 91(3): 2531-2535, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30667232

RESUMO

We developed a method to analyze amino acids using a personal glucose meter (PGM). In this method, the principles of protein biosynthesis were interfaced with the sensing mechanism of a PGM to enable simple and ubiquitous measurement of amino acids. A reaction mixture for cell-free protein synthesis was designed to synthesize a bacterial invertase in response to exogenous addition of a specific amino acid. The invertase synthesized upon addition of an assay sample containing the amino acid of interest was used to convert sucrose into glucose, which was detected using a PGM. The titers of the amino acid in assay samples were precisely represented by the readouts of a PGM. In addition to the convenience provided by use of a PGM, the accuracy and reproducibility of this method were comparable to those of standard high-performance liquid chromatography based methods.


Assuntos
Aminoácidos/análise , Automonitorização da Glicemia/instrumentação , Biossíntese de Proteínas , Sistema Livre de Células/metabolismo , Eletroquímica , Humanos , Fatores de Tempo
7.
Metab Eng ; 47: 113-120, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29545147

RESUMO

3-Hydroxypropionic acid (3-HP) is an important platform chemical, and biological production of 3-HP from glycerol as a carbon source using glycerol dehydratase (GDHt) and aldehyde dehydrogenase (ALDH) has been revealed to be effective because it involves a relatively simple metabolic pathway and exhibits higher yield and productivity than other biosynthetic pathways. Despite the successful attempts of 3-HP production from glycerol, the biological process suffers from problems arising from low activity and inactivation of the two enzymes. To apply the directed evolutionary approach to engineer the 3-HP production system, we constructed a synthetic selection device using a 3-HP-responsive transcription factor and developed a selection approach for screening 3-HP-producing microorganisms. The method was applied to an ALDH library, specifically aldehyde-binding site library of alpha-ketoglutaric semialdehyde dehydrogenase (KGSADH). Only two serial cultures resulted in enrichment of strains showing increased 3-HP production, and an isolated KGSADH variant enzyme exhibited a 2.79-fold higher catalytic efficiency toward its aldehyde substrate than the wild-type one. This approach will provide the simple and efficient tool to engineer the pathway enzymes in metabolic engineering.


Assuntos
Aldeído Desidrogenase , Evolução Molecular Direcionada , Proteínas de Escherichia coli , Escherichia coli , Ácido Láctico/análogos & derivados , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Láctico/biossíntese
8.
Bioconjug Chem ; 29(10): 3240-3244, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30179444

RESUMO

Conjugation of antibody has expanded its applications in therapeutics and diagnostics, and various methods have been developed based on chemical or enzymatic reactions. However, the majority of them have focused on synthetic molecules such as small molecules, nucleic acids, or synthetic materials, but site-specific conjugation of antibody with protein cargo has rarely been demonstrated. In this Communication, we report a PEptide-DIrected Photo-cross-linking (PEDIP) reaction for site-specific conjugation of IgG with protein using an Fc-binding peptide and a photoreactive amino acid analogue, and demonstrate this method by developing an immunotoxin composed of a Her2-targeting IgG (trastuzumab) and an engineered Pseudomonas exotoxin A (PE24). The ADP-ribosylation of eukaryotic elongation factor-2 by the bacterial toxin inhibits the ribosomal translation of protein, and the trastuzumab-PE24 conjugate exhibited the cytotoxicity toward Her2-overexpressing cell lines. The PEDIP reaction can also be applied for many other types of cargo with slight modifications of the method.


Assuntos
ADP Ribose Transferases/química , Toxinas Bacterianas/química , Reagentes de Ligações Cruzadas/química , Exotoxinas/química , Imunoglobulina G/química , Peptídeos/química , Processos Fotoquímicos , Trastuzumab/química , Fatores de Virulência/química , Linhagem Celular Tumoral , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Humanos , Imunotoxinas/química , Exotoxina A de Pseudomonas aeruginosa
9.
Adv Exp Med Biol ; 1064: 109-121, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30471029

RESUMO

The use of biomimetic scaffolds for bone tissue engineering has been studied for a long time. Biomimetic scaffolds can assist and accelerate bone regeneration that is similar to that of authentic tissue, which represents the environment of cells in a living organism. Currently, numerous biomaterials have been reported for use as a biomimetic scaffold. This review focuses on the design of biomimetic scaffolds, kinds of biomaterials and methods used to fabricate biomimetic scaffolds, growth factors used with biomimetic scaffold for bone regeneration, mobilization of biological agents into biomimetic scaffolds, and studies on (pre)clinical bone regeneration from biomimetic scaffolds. Then, future prospects for biomimetic scaffolds are discussed.


Assuntos
Materiais Biomiméticos , Regeneração Óssea , Osso e Ossos , Engenharia Tecidual , Alicerces Teciduais , Humanos
10.
Anal Chem ; 89(18): 9638-9642, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28776976

RESUMO

In this study, we present a simple and economical method that enables rapid quantification of amino acids based on their polymerization into a signal-generating protein. This method harnesses amino acid-deficient cell-free protein synthesis systems that generate fluorescence signals in response to exogenous amino acids. When premixed with assay samples containing the amino acids in question, incubation of the cell-free synthesis reaction mixture rapidly resulted in the production of sfGFP, the fluorescence intensity of which was linearly proportional to the concentration of the amino acids. The assay method achieved a limit of detection as low as ∼100 nM and was successfully applied to the quantification of disease-related amino acids in biological samples. Compared with standard methods in current use that require chemical derivatization of amino acids and chromatographic equipment, the complementation assay method developed in this work enables the direct translation of amino acid titer into measurable biofluorescence intensity in a much shorter period, providing a more affordable and flexible option for the quantification of amino acids.


Assuntos
Aminoácidos/análise , Biossíntese de Proteínas , Sistema Livre de Células , Fluorescência , Polimerização , Proteínas/síntese química , Proteínas/química
11.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt B): 3016-3023, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28212794

RESUMO

BACKGROUND: Adding new amino acids to the set of building blocks for protein synthesis expands the scope of protein engineering, and orthogonal pairs of tRNA and aminoacyl-tRNA synthetase have been developed for incorporating unnatural amino acids (UAAs) into proteins. While diverse systems have been developed to incorporate UAAs in response to the amber codon, less research has been focused on four-base codons despites their advantages. In this study, we report an efficient method to incorporate UAA in response to an AGGA codon in Escherichia coli. RESULTS: The Methanococcus jannaschii tyrosyl-tRNA synthetase-tRNACUA(MjTyrRS-MjtRNACUA) orthogonal pair has been engineered to incorporate diverse UAAs in response to the amber codon. To apply the engineered MjTyrRS enzymes for UAAs to a four-base codon suppression, we developed an MjTyrRS-MjtRNAUCCU pair system that enabled incorporation of UAAs in response to the AGGA codon in E. coli. Using this system, we demonstrated that several UAAs could be incorporated quantitatively in the AGGA site. In addition, multiple AGGA codons were successfully suppressed in an E. coli strain when the endogenous tRNACCUArg gene was knocked out. CONCLUSION: An efficient system was developed for the incorporation of UAAs in response to the AGGA four-base codon in E. coli, and the method was successfully demonstrated for several UAAs and for multiple AGGA sites. GENERAL SIGNIFICANCE: The developed system can expand the repertoire of protein engineering tools based on amino acid analogues in combination with other UAA incorporation methods. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.


Assuntos
Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Códon/síntese química , Escherichia coli , Engenharia de Proteínas/métodos , Proteínas Recombinantes/metabolismo , Aminoácidos/síntese química , Clonagem Molecular/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Código Genético , Mathanococcus/genética , Mutagênese Sítio-Dirigida/métodos , Proteínas Recombinantes/genética , Biologia Sintética/métodos
12.
Appl Microbiol Biotechnol ; 101(6): 2333-2342, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27915377

RESUMO

Esterases comprise a group of enzymes that catalyze the cleavage and synthesis of ester bonds. They are important in biotechnological applications owing to their enantioselectivity, regioselectivity, broad substrate specificity, and the fact that they do not require cofactors. In a previous study, we isolated the esterase Est25 from a metagenomic library. Est25 showed catalytic activity toward the (R,S)-ketoprofen ethyl ester but had low enantioselectivity toward the (S)-ketoprofen ethyl ester. Because (S)-ketoprofen has stronger anti-inflammatory effects and fewer side effects than (R)-ketoprofen, enantioselectivity of this esterase is important. In this study, we generated Est25 mutants with improved enantioselectivity toward the (S)-ketoprofen ethyl ester; improved enantioselectivity of mutants was established by analysis of their crystal structures. The enantioselectivity of mutants was influenced by substitution of Phe72 and Leu255. Substituting these residues changed the size of the binding pocket and the entrance hole that leads to the active site. The enantioselectivity of Est25 (E = 1.1 ± 0.0) was improved in the mutants F72G (E = 1.9 ± 0.2), L255W (E = 16.1 ± 1.1), and F72G/L255W (E = 60.1 ± 0.5). Finally, characterization of Est25 mutants was performed by determining the optimum reaction conditions, thermostability, effect of additives, and substrate specificity after substituting Phe72 and Leu255.


Assuntos
Proteínas de Bactérias/química , Esterases/química , Cetoprofeno/química , Metagenoma , Microbiologia do Solo , Anti-Inflamatórios não Esteroides , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Esterases/genética , Esterases/metabolismo , Ésteres , Expressão Gênica , Biblioteca Genômica , Cetoprofeno/metabolismo , Cinética , Consórcios Microbianos/genética , Modelos Moleculares , Mutação , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato
13.
Electrophoresis ; 37(5-6): 818-25, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26757485

RESUMO

DNA sequencing or separation by conventional capillary electrophoresis with a polymer matrix has some inherent drawbacks, such as the expense of polymer matrix and limitations in sequencing read length. As DNA fragments have a linear charge-to-friction ratio in free solution, DNA fragments cannot be separated by size. However, size-based separation of DNA is possible in free-solution conjugate electrophoresis (FSCE) if a "drag-tag" is attached to DNA fragments because the tag breaks the linear charge-to-friction scaling. Although several previous studies have demonstrated the feasibility of DNA separation by free-solution conjugated electrophoresis, generation of a monodisperse drag-tag and identification of a strong, site-specific conjugation method between a DNA fragment and a drag-tag are challenges that still remain. In this study, we demonstrate an efficient FSCE method by conjugating a biologically synthesized elastin-like polypeptide (ELP) and green fluorescent protein (GFP) to DNA fragments. In addition, to produce strong and site-specific conjugation, a methionine residue in drag-tags is replaced with homopropargylglycine (Hpg), which can be conjugated specifically to a DNA fragment with an azide site.


Assuntos
Aminoácidos/genética , DNA/genética , DNA/isolamento & purificação , Eletroforese/métodos , Proteínas Recombinantes de Fusão/genética , Análise de Sequência de DNA/métodos , DNA/química , Elastina/genética , Técnicas de Sonda Molecular
14.
Biotechnol Bioeng ; 113(10): 2107-12, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27043877

RESUMO

Antibodies that target intracellular proteins hold great promise in the development of novel therapeutic interventions for various diseases. In particular, antibodies that can cross cellular membranes have potential applications in controlling disease-related intracellular protein-protein interactions. Given the large number of cytosolic proteins and complicated interactions that are potentially involved in disease development, discovery of antibodies targeting intracellular proteins requires iterative cycles of expression and assessment of candidate antibodies. Because current cell-based expression methods do not provide sufficient throughput for production and assay of cytosol-penetrating antibodies, we integrated a cell-free protein synthesis system designed to provide optimal conditions for production of functional antibodies with a cytosol-penetration assay. The proposed approach of consolidating cell-free synthesis and cell-based assay will substantially expand the capability of discovering and engineering antibodies that can cross the cell membrane and effectively control protein-mediated cellular functions. Biotechnol. Bioeng. 2016;113: 2107-2112. © 2016 Wiley Periodicals, Inc.


Assuntos
Anticorpos Monoclonais/metabolismo , Citosol/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Engenharia de Proteínas/métodos , Anticorpos Monoclonais/genética , Sistema Livre de Células/metabolismo , Células HeLa , Humanos
15.
Biochem Biophys Res Commun ; 467(4): 771-7, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26482850

RESUMO

Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with one GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 µM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3-4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity.


Assuntos
Anticorpos Monoclonais/metabolismo , Bioensaio/métodos , Citosol/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Imunoglobulina G/metabolismo , Sequência de Aminoácidos , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/genética , Western Blotting , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Proteínas de Fluorescência Verde/genética , Células HEK293/metabolismo , Células HeLa/metabolismo , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Espectrometria de Fluorescência/métodos
16.
Chembiochem ; 15(12): 1777-81, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25045032

RESUMO

Non-canonical amino acids (ncAAs) provide powerful tools for engineering the chemical and physical properties of proteins. However, introducing ncAAs into proteins can affect protein properties in unpredictable ways, thus necessitating screening efforts to identify mutants with desirable properties. In this work, we describe an Escherichia coli cell surface display platform for the directed evolution of clickable antibody fragments. This platform enabled isolation of antibody fragments with improved digoxigenin binding and modest affinity maturation in several different ncAA contexts. Azide-functionalized fragments exhibited improved binding kinetics relative to their methionine counterparts, facile chemical modification through azide-alkyne cycloaddition, and retention of binding properties after modification. The results described here suggest new possibilities for protein engineering, including modulation of molecular recognition events by ncAAs and direct screening of libraries of chemically modified proteins.


Assuntos
Química Click , Evolução Molecular Direcionada , Escherichia coli/imunologia , Fragmentos de Imunoglobulinas/química , Fragmentos de Imunoglobulinas/imunologia , Aminoácidos/química , Aminoácidos/imunologia , Afinidade de Anticorpos/imunologia , Digoxigenina/química , Digoxigenina/imunologia , Escherichia coli/citologia , Citometria de Fluxo , Fragmentos de Imunoglobulinas/isolamento & purificação , Modelos Moleculares , Estrutura Molecular
17.
Proc Natl Acad Sci U S A ; 108(4): 1272-7, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21209329

RESUMO

A number of heterologous enzymes have been investigated for cancer treatment and other therapeutic applications; however, immunogenicity issues have limited their clinical utility. Here, a new approach has been created for heterologous enzyme deimmunization whereby combinatorial saturation mutagenesis is coupled with a screening strategy that capitalizes on the evolutionary biology concept of neutral drift, and combined with iterative computational prediction of T-cell epitopes to achieve extensive reengineering of a protein sequence for reduced MHC-II binding propensity without affecting catalytic and pharmacological properties. Escherichia coli L-asparaginase II (EcAII), the only nonhuman enzyme approved for repeated administration, is critical in treatment of childhood acute lymphoblastic leukemia (ALL), but elicits adverse antibody responses in a significant fraction of patients. The neutral drift screening of combinatorial saturation mutagenesis libraries at a total of 12 positions was used to isolate an EcAII variant containing eight amino acid substitutions within computationally predicted T-cell epitopes--of which four were nonconservative--while still exhibiting k(cat)/K(M) = 10(6) M(-1) s(-1) for L-Asn hydrolysis. Further, immunization of HLA-transgenic mice expressing the ALL-associated DRB1*0401 allele with the engineered variant resulted in significantly reduced T-cell responses and a 10-fold reduction in anti-EcAII IgG titers relative to the existing therapeutic. This significant reduction in the immunogenicity of EcAII may be clinically relevant for ALL treatment and illustrates the potential of employing neutral drift screens to achieve large jumps in sequence space as may be required for the deimmunization of heterologous proteins.


Assuntos
Asparaginase/imunologia , Epitopos de Linfócito T/imunologia , Proteínas de Escherichia coli/imunologia , Imunização/métodos , Animais , Asparaginase/química , Asparaginase/genética , Domínio Catalítico , Biologia Computacional/métodos , Evolução Molecular Direcionada , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Feminino , Citometria de Fluxo , Deriva Genética , Antígenos HLA-DR/genética , Antígenos HLA-DR/imunologia , Cadeias HLA-DRB1 , Humanos , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Mutação , Biblioteca de Peptídeos , Estrutura Terciária de Proteína , Linfócitos T/imunologia , Linfócitos T/metabolismo
18.
J Agric Food Chem ; 72(7): 3783-3792, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346351

RESUMO

Cell-free protein synthesis (CFPS) has recently gained considerable attention as a new platform for developing methods to detect various molecules, ranging from small chemicals to biological macromolecules. Retroreflection has been used as an alternative signal to develop analytical methods because it can be detected by using a simple instrument comprising a white light source and a camera. Here, we report a novel reporter protein that couples the capability of CFPS and the simplicity of retroreflection signal detection. The design of the reporter was based on two pairs of protein-peptide interactions, SpyCatcher003-SpyTag003 and MDM2-PMI(N8A). MDM2-MDM2-SpyCatcher003 was decided as the reporter protein, and the two peptides, SpyTag003 and PMI(N8A), were immobilized on the surfaces of retroreflective Janus particles and microfluidic chips, respectively. The developed retroreflection signal detection system was combined with a previously reported CFPS reaction that can transduce the presence of a single-stranded nucleic acid into protein synthesis. The resulting methods were applied to detect 16S rRNAs of several foodborne pathogens. Concentration-dependent relationships were observed over a range of 10° fM to 102 pM, with the limits of detection being single-digit femtomolar concentrations. Considering the designability of the CFPS system for other targets, the retroreflection signal detection method will enable the development of novel methods to detect various molecules.


Assuntos
Ácidos Nucleicos , Biossíntese de Proteínas , Proteínas
19.
Biosens Bioelectron ; 257: 116331, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663323

RESUMO

The rapid and precise detection of pathogenic agents is critical for public health and societal stability. The detection of biological warfare agents (BWAs) is especially vital within military and counter-terrorism contexts, essential in defending against biological threats. Traditional methods, such as polymerase chain reaction (PCR), are limited by their need for specific settings, impacting their adaptability and versatility. This study introduces a cell-free biosensor for BWA detection by converting the 16S rRNA of targeted pathogens into detectable functional protein molecules. The modular nature of this approach allows for the flexible configuration of pathogen detection, enabling the simultaneous identification of multiple pathogenic 16S rRNAs through customized reporter proteins for each targeted sequence. Furthermore, we demonstrate how this method integrates with techniques utilizing retroreflective Janus particles (RJPs) for facile and highly sensitive pathogen detection. The cell-free biosensor, employing RJPs to measure the reflection of non-chromatic white light, can detect 16S rRNA from BWAs at femtomolar levels, corresponding to tens of colony-forming units per milliliter of pathogenic bacteria. These findings represent a significant advancement in pathogen detection, offering a more efficient and accessible alternative to conventional methodologies.


Assuntos
Armas Biológicas , Técnicas Biossensoriais , RNA Ribossômico 16S , Técnicas Biossensoriais/métodos , RNA Ribossômico 16S/genética , Humanos , Bactérias/isolamento & purificação , Bactérias/genética , Limite de Detecção , Sistema Livre de Células
20.
Analyst ; 138(23): 7164-8, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24106734

RESUMO

Proteases are involved in various biological phenomena, and their aberrant activity can be an important indicator of disease. Thus, various methods have been developed to analyze the activities of proteases, but their wide application has been hampered because each method has drawbacks. In this report, we propose a new protease assay method based on an engineered autoinhibited protein and enzyme-linked immunoassay (ELISA) in which a protease of interest activates the autoinhibited protein and the signal is amplified via ELISA. Using this concept a sensitive assay method for MMP2 and caspase-3 was developed. The limit of detection for the two proteases was as low as 7 pM for MMP2 and 0.1 pM for caspase-3. The autoinhibited protein is designed modularly, and the new platform is general enough for the development of assay methods for other proteases with minimal modification.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Peptídeo Hidrolases/metabolismo , Engenharia de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA