Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Small ; 19(46): e2302848, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37376857

RESUMO

Metamaterials have the powerful ability to freely control multiband electromagnetic (EM) waves through elaborately designed "artificial atoms" and are hence in the limelight in various fields. Typically, camouflage materials manipulate wave-matter interactions to achieve the desired optical properties, in particular, various techniques are used for multiband camouflage materials in both infrared (IR) and microwave (MW) ranges to overcome the scale difference between these bands. However, in the context of components required for microwave communications, simultaneous control of IR emission and MW transmission is required, which is challenging owing to differences in the wave-matter interactions in these two bands. Herein, the state-of-the-art concept of flexible compatible camouflage metasurface (FCCM) is demonstrated, which can manipulate IR signatures while maintaining MW selective transmission simultaneously. For achieving maximum IR tunability and MW selective transmission, it is performed optimization using the particle swarm optimization (PSO) algorithm. Consequently, the FCCM exhibits compatible camouflage performance with both IR signature reduction and MW selective transmission is demonstrated, with 77.7% IR tunability and 93.8% transmission achieved for a flat FCCM. Furthermore, the FCCM reached the 89.8% IR signature reduction effect even in curved situations.

2.
Sensors (Basel) ; 23(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37514644

RESUMO

With the continuous reduction in size and increase in density of semiconductor devices, there is a growing demand for contact solutions that enable high-speed testing in automotive, 5G, and artificial intelligence-based devices. Although existing solutions, such as spring pins and rubber sockets, have been effective in various applications, there is still a need for new solutions that accommodate fine-pitch, high-speed, and high-density requirements. This study proposes a novel three-dimensional microelectromechanical system spring structure coaxial socket for semiconductor chip package testing. The socket design incorporates impedance matching for high-speed testing and addresses the challenges of fine-pitch and high-density applications. Mechanical tests are conducted to evaluate the durability of the structure and electrical tests are performed to verify electrical characteristics by utilizing a vector network analyzer up to 60 GHz. Our results have revealed promising performance and will help in further optimizing the design for potential production in the field and industry.

3.
Sensors (Basel) ; 22(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35336557

RESUMO

With the advancement of technology, Unmanned Aerial Vehicles (UAVs), also known as drones, are being used in numerous applications. However, the illegal use of UAVs, such as in terrorism and spycams, has also increased, which has led to active research on anti-drone methods. Various anti-drone methods have been proposed over time; however, the most representative method is to apply intentional electromagnetic interference to drones, especially to their sensor modules. In this paper, we review various studies on the effect of intentional electromagnetic interference (IEMI) on the sensor modules. Various studies on IEMI sources are reviewed and classified on the basis of the power level, information needed, and frequency. To demonstrate the application of drone-sensor modules, major sensor modules used in drones are briefly introduced, and the setup and results of the IEMI experiment performed on them are described. Finally, we discuss the effectiveness and limitations of the proposed methods and present perspectives for further research necessary for the actual application of anti-drone technology.

4.
Sensors (Basel) ; 22(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35161480

RESUMO

In this paper, a numerical algorithm for the electromagnetic scattering analysis of singly curved dielectric structures, which can be applied to a canopy of fighter aircraft, is presented with experimental verification. At first, the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) method is used as a MoM-based solution for the electromagnetic scattering of a dielectric material. Its formulation was generated with the EFIE formulation in a multi-region condition. The PMCHWT algorithm is implemented with C++ code, and the accuracy is verified by calculating the bistatic RCS of some canonical structures with conductive or dielectric materials. RCS measurement under quasi-anechoic condition is presented with its procedure and calibration method. The monostatic RCS results of a specially modeled singly curved dielectric structures are obtained analytically with the PMCHWT, as well as experimentally, revealing excellent agreement.

5.
Sensors (Basel) ; 21(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800771

RESUMO

This review paper focuses on radio-frequency (RF) biosensors for real-time and continuous glucose sensing reported in the literature, including our recent research. Diverse versions of glucose biosensors based on RF devices and circuits are briefly introduced, and their performances are compared. In addition, the limitations of the developed RF glucose biosensors are discussed. Finally, we present perspectives on state-of-art RF biosensing chips for point-of-care diagnosis and describe their future challenges.


Assuntos
Técnicas Biossensoriais , Glucose , Sistemas Automatizados de Assistência Junto ao Leito , Ondas de Rádio
6.
Sensors (Basel) ; 21(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445462

RESUMO

Affinity propagation (AP) clustering with low complexity and high performance is suitable for radio remote head (RRH) clustering for real-time joint transmission in the cloud radio access network. The existing AP algorithms for joint transmission have the limitation of high computational complexities owing to re-sweeping preferences (diagonal components of the similarity matrix) to determine the optimal number of clusters as system parameters such as network topology. To overcome this limitation, we propose a new approach in which preferences are fixed, where the threshold changes in response to the variations in system parameters. In AP clustering, each diagonal value of a final converged matrix is mapped to the position (x,y coordinates) of a corresponding RRH to form two-dimensional image. Furthermore, an environment-adaptive threshold value is determined by adopting Otsu's method, which uses the gray-scale histogram of the image to make a statistical decision. Additionally, a simple greedy merging algorithm is proposed to resolve the problem of inter-cluster interference owing to the adjacent RRHs selected as exemplars (cluster centers). For a realistic performance assessment, both grid and uniform network topologies are considered, including exterior interference and various transmitting power levels of an RRH. It is demonstrated that with similar normalized execution times, the proposed algorithm provides better spectral and energy efficiencies than those of the existing algorithms.

7.
Sensors (Basel) ; 21(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34883792

RESUMO

To measure the electromagnetic properties of steel fiber-reinforced concrete (SFRC) in the X-band, 1-port measurements were performed using a lens horn antenna in a free-space measurement system. Free-space 1-port calibration with translations of the position of the reflector regarding the characteristics of the focused beam lens horn antenna was applied. The intrinsic impedance and complex permittivity of the SFRC were obtained from the measured reflection characteristics. The steel fiber content increased and the electromagnetic properties of the SFRC gradually changed from a dielectric to a conductor, even in very low frequencies compared to the plasma frequencies of general metal, which are optical frequencies. This is considered to be the plasmon effect of the metallic structure formed by the steel fiber. This result is applicable for analyses of the electromagnetic phenomenon of large structures with fiber content.

8.
Sensors (Basel) ; 21(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34960578

RESUMO

In this study, a method was experimentally verified for further reducing the radar cross-section (RCS) of a two-dimensional planar target by using a dielectric rim in a dielectric barrier discharge (DBD) plasma generator using a frequency selective surface (FSS) as an electrode. By designing the frequency selective surface such that the passbands of the radar signal match, it is possible to minimize the effect of the conductor electrode, in order to maximize the RCS reduction effect due to the plasma. By designing the FSS to be independent of the polarization, the effect of RCS reduction can be insensitive to the polarization of the incoming wave. Furthermore, by introducing a dielectric rim between the FSS electrode and the target, an additional RCS reduction effect is achieved. By fabricating the proposed plasma generator, an RCS reduction effect of up to 6.4 dB in X-band was experimentally verified.

9.
Sensors (Basel) ; 20(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110972

RESUMO

Wireless access in vehicular environments to support wireless communication between vehicles has been developed to provide road safety and infotainment services. In vehicular environments where the channel changes rapidly, channel estimation is very important in improving the reliability of wireless communication. Therefore, numerous channel estimation schemes have been proposed; however, none of the schemes proposed so far can perform well over the entire signal-to-noise ratio (SNR) region. In this paper, we propose a novel channel estimation scheme that selectively uses the better scheme between two channel estimation schemes on a symbol-by-symbol basis. The results show that the proposed scheme performs symbol-by-symbol selection of the better channel estimation scheme within a packet, and thus shows excellent performance over the entire SNR region in vehicular environments in terms of the bit error rate and packet error rate.

10.
Sensors (Basel) ; 20(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339107

RESUMO

Near-field to far-field transformation (NFFFT) is a frequently-used method in antenna and radar cross section (RCS) measurements for various applications. For weapon systems, most measurements are captured in the near-field area in an anechoic chamber, considering the security requirements for the design process and high spatial costs of far-field measurements. As the theoretical RCS value is the power ratio of the scattered wave to the incident wave in the far-field region, a scattered wave measured in the near-field region needs to be converted into field values in the far-field region. Therefore, this paper proposes a near-field to far-field transformation algorithm based on spherical wave expansion for application in near-field RCS measurement systems. If the distance and angular coordinates of each measurement point are known, the spherical wave functions in an orthogonal relationship can be calculated. If each weight is assumed to be unknown, a system of linear equations as numerous as the number of samples measured in the near electric field can be generated. In this system of linear equations, each weight value can be calculated using the iterative least squares QR-factorization method. Based on this theory, the validity of the proposed NFFFT is verified for several scatterer types, frequencies and measurement distances.

11.
Sensors (Basel) ; 19(13)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284437

RESUMO

Recently, research into autonomous driving and traffic safety has been drawing a great deal of attention. To realize autonomous driving and solve traffic safety problems, wireless access in vehicular environments (WAVE) technology has been developed, and IEEE 802.11p defines the physical (PHY) layer and medium access control (MAC) layer in the WAVE standard. However, the IEEE 802.11p frame structure, which has low pilot density, makes it difficult to predict the properties of wireless channels in a vehicular environment with high vehicle speeds; thus, the performance of the system is degraded in realistic vehicular environments. The motivation for this paper is to improve the channel estimation and tracking performance without changing the IEEE 802.11p frame structure. Therefore, we propose a channel estimation technique that can perform well over the entire SNR range of values by changing the method of channel estimation accordingly. The proposed scheme selectively uses two channel estimation schemes, each with outstanding performance for either high-SNR or low-SNR signals. To implement this, an adaptation algorithm based on a preamble is proposed. The preamble is a signal known to the transmitter-receiver, so that the receiver can obtain channel estimates without demapping errors, evaluating performance of the channel estimation schemes. Simulation results comparing the proposed method to other schemes demonstrate that the proposed scheme can selectively switch between the two schemes to improve overall performance.

12.
Sensors (Basel) ; 18(11)2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30423976

RESUMO

In this paper, a fluidic glucose sensor that is based on a complementary split-ring resonator (CSRR) is proposed for the microwave frequency region. The detection of glucose with different concentrations from 0 mg/dL to 400 mg/dL in a non-invasive manner is possible by introducing a fluidic system. The glucose concentration can be continuously monitored by tracking the transmission coefficient S 21 as a sensing parameter. The variation tendency in S 21 by the glucose concentration is analyzed with equivalent circuit model. In addition, to eradicate the systematic error due to temperature variation, the sensor is tested in two temperature conditions: the constant temperature condition and the time-dependent varying temperature condition. For the varying temperature condition, the temperature correction function was derived between the temperature and the variation in S 21 for DI water. By applying the fitting function to glucose solution, the subsidiary results due to temperature can be completely eliminated. As a result, the S 21 varies by 0.03 dB as the glucose concentration increases from 0 mg/dL to 400 mg/dL.

13.
Sci Adv ; 9(29): eadh9770, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37467332

RESUMO

Graphene, with superior electrical tunabilities, has arisen as a multifunctional insertion layer in vertically stacked devices. Although the role of graphene inserted in metal-semiconductor junctions has been well investigated in quasi-static charge transport regime, the implication of graphene insertion at ultrahigh frequencies has rarely been considered. Here, we demonstrate the diode operation of vertical Pt/n-MoSe2/graphene/Au assemblies at ~200-GHz cutoff frequency (fC). The electric charge modulation by the inserted graphene becomes essentially frozen above a few GHz frequencies due to graphene quantum capacitance-induced delay, so that the Ohmic graphene/MoSe2 junction may be transformed to a pinning-free Schottky junction. Our diodes exhibit much lower total capacitance than devices without graphene insertion, deriving an order of magnitude higher fC, which clearly demonstrates the merit of graphene at high frequencies.

14.
IEEE Trans Biomed Circuits Syst ; 15(5): 1017-1026, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34570708

RESUMO

In this paper, a microwave fluidic glucose sensor based on a microwave resonator coupled with an interferometric system is proposed for sensitivity enhancement. The proposed glucose sensor consists of two parts: a sensing part and a sensitivity enhancement part. The former is composed of a rectangular complementary split ring resonator (CSRR), and the latter is composed of a variable attenuator, a variable phase shifter, two hybrid couplers, and an RF power detector. Because the variation in the electrical properties, which is utilized in the microwave detection scheme, with glucose concentration over the possible concentration range in the human body is very small, improvement of the sensitivity is critical for practical use. Thus, the effective sensing area of the rectangular CSRR is determined by considering the electric field distribution. In addition, magnitude and phase conditions for the effective sensitivity enhancement are derived from a mathematical analysis of the proposed interferometric system. In the present experiment, aimed at demonstrating the detection performance as a function of the glucose concentration in the range of 0 mg/dL to 400 mg/dL, the sensitivity is significantly improved by 48 times by applying the derived conditions for effective sensitivity enhancement. Furthermore, the accuracy of the proposed glucose sensor for glucose concentrations at a step of 100 mg/dL is verified by the Clarke error grid. Based on the measurement results, the proposed glucose sensor is demonstrated to be applicable to noninvasive and continuous monitoring in practical environments.


Assuntos
Técnicas Biossensoriais , Micro-Ondas , Eletricidade , Glucose , Humanos
15.
Materials (Basel) ; 13(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630590

RESUMO

In this review, the advances in radio-frequency (RF) /microwave chemical gas sensors using conducting polymers are discussed. First, the introduction of various conducting polymers is described. Only polyaniline (PANi), polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT), which are mainly used for gas sensors in RF/microwave region, are focused in this review. Sensing mechanism of the three conducting polymers are presented. And the RF/microwave characteristics and RF/microwave applications of the three conducting polymers are discussed. Moreover, the gas sensors using conducting polymers in RF/microwave frequencies are described. Finally, the the challenges and the prospects of the next generation of the RF/microwave based chemical sensors for wireless applications are proposed.

16.
ACS Nano ; 14(9): 11962-11972, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32813495

RESUMO

Passive component-based soft resonators have been spotlighted in the field of wearable and implantable devices due to their remote operation capability and tunable properties. As the output signal of the resonator-based wireless communication device is given in the form of a vector (i.e., a spectrum of reflection coefficient), multiple information can, in principle, be stored and interpreted. Herein, we introduce a device that can deconvolute mechanical stimuli from a single wireless signal using dual-mode operation, specifically enabled by the use of Ti3C2Tx MXene. MXene's strong electromagnetic shielding effect enables the resonator to simultaneously measure pressure and strain without overlapping its output signal, unlike other conductive counterparts that are deficient in shielding ability. Furthermore, convolutional neural-network-based deep learning was implemented to predict the pressure and strain values from unforeseen output wireless signals. Our MXene-integrated wireless device can also be utilized as an on-skin mechanical stimuli sensor for rehabilitation monitoring after orthopedic surgery. The dual-mode signal variation mechanism enabled by integration of MXene allows wireless communication systems to efficiently handle various information simultaneously, through which multistimuli sensing capability can be imparted into passive component-based wearable and implantable electrical devices.

17.
Adv Mater ; 32(8): e1906269, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31840337

RESUMO

Inspired by the human somatosensory system, pressure applied to multiple pressure sensors is received in parallel and combined into a representative signal pattern, which is subsequently processed using machine learning. The pressure signals are combined using a wireless system, where each sensor is assigned a specific resonant frequency on the reflection coefficient (S11 ) spectrum, and the applied pressure changes the magnitude of the S11 pole with minimal frequency shift. This allows the differentiation and identification of the pressure applied to each sensor. The pressure sensor consists of polypyrrole-coated microstructured poly(dimethylsiloxane) placed on top of electrodes, operating as a capacitive sensor. The high dielectric constant of polypyrrole enables relatively high pressure-sensing performance. The coils are vertically stacked to enable the reader to receive the signals from all of the sensors simultaneously at a single location, analogous to the junction between neighboring primary neurons to a secondary neuron. Here, the stacking order is important to minimize the interference between the coils. Furthermore, convolutional neural network (CNN)-based machine learning is utilized to predict the applied pressure of each sensor from unforeseen S11 spectra. With increasing training, the prediction accuracy improves (with mean squared error of 0.12), analogous to humans' cognitive learning ability.


Assuntos
Aprendizado de Máquina , Pressão , Dimetilpolisiloxanos/química , Eletrodos , Humanos , Polímeros/química , Pirróis/química , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio
18.
Materials (Basel) ; 12(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901965

RESUMO

In this paper, the advances in radio-frequency (RF)/microwave biosensors based on graphene nanomaterials including graphene, graphene oxide (GO), and reduced graphene oxide (rGO) are reviewed. From a few frontier studies, recently developed graphene nanomaterials-based RF/microwave biosensors are examined in-depth and discussed. Finally, the prospects and challenges of the next-generation RF/microwave biosensors for wireless biomedical applications are proposed.

19.
IEEE Trans Biomed Circuits Syst ; 13(3): 493-502, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30946676

RESUMO

In this paper, a radio frequency vital sign sensor based on double voltage-controlled oscillators (VCOs) combined with a switchable phase-locked loop (PLL) is proposed for a noncontact remote vital sign sensing system. Our sensing system primarily detects the periodic movements of the human lungs and the hearts via the impedance variation of the resonator. With a change in impedance, both the VCO oscillation frequency and the PLL feedback voltage also change. Thus, by tracking the feedback voltage of the PLL, breath and heart rate signals can be acquired simultaneously. However, as the distance between the body and the sensor varies, there are certain points with minimal sensitivity, making it is quite difficult to detect vital signs. These points, called impedance null points, periodically occur at distances proportional to the wavelength. To overcome the impedance null point problem, two resonators operating at different frequencies, 2.40 and 2.76 GHz, are employed as receiving components. In an experiment to investigate the sensing performance as a function of distance, the measurement distance was accurately controlled by a linear actuator. Furthermore, to evaluate the sensing performance in a real environment, experiments were carried out with a male and a female subject in a static vehicle. To demonstrate the real-time vital sign monitoring capability, spectrograms were utilized, and the accuracy was assessed relative to reference sensors. Based on the results, it is demonstrated that the proposed remote sensor can reliably detect vital signs in a real vehicle environment.


Assuntos
Condução de Veículo , Desenho de Equipamento , Frequência Cardíaca , Mecânica Respiratória , Dispositivos Eletrônicos Vestíveis , Feminino , Humanos , Masculino
20.
Sci Rep ; 8(1): 439, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323214

RESUMO

A real-time humidity sensor based on a microwave resonator coupled with a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) conducting polymer (CP) film is proposed in this paper. The resonator is patterned on a printed circuit board and is excited by electromagnetic field coupling. To enhance the sensitivity of the sensor, the CP film is located in the area with the strongest electric field in the resonator. To investigate the performance, the proposed sensor is placed alongside a reference sensor in a humidity chamber, and humidity is injected at room temperature. The experimental results indicate that the electrical properties of the resonator with the CP film, such as the transmission coefficient (S 21) and resonance frequency, change with the relative humidity (RH). Specifically, as the RH changes from 5% to 80%, S 21 and the resonance frequency change simultaneously. Moreover, the proposed sensor exhibits great repeatability in the middle of the sensing range, which is from 40% to 60% RH. Consequently, our resonator coupled with the CP film can be used as a real-time humidity-sensing device in the microwave range, where various radio-frequency devices are in use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA