RESUMO
The electrochemical reduction of nitrate (NO3-) and nitrite (NO2-) enables sustainable, carbon-neutral, and decentralized routes to produce ammonia (NH3). Copper-based materials are promising electrocatalysts for NOx- conversion to NH3. However, the underlying reaction mechanisms and the role of different Cu species during the catalytic process are still poorly understood. Herein, by combining quasi in situ X-ray photoelectron spectroscopy (XPS) and operando X-ray absorption spectroscopy (XAS), we unveiled that Cu is mostly in metallic form during the highly selective reduction of NO3-/NO2- to NH3. On the contrary, Cu(I) species are predominant in a potential region where the two-electron reduction of NO3- to NO2- is the major reaction. Electrokinetic analysis and in situ Raman spectroscopy was also used to propose possible steps and intermediates leading to NO2- and NH3, respectively. This work establishes a correlation between the catalytic performance and the dynamic changes of the chemical state of Cu, and provides crucial mechanistic insights into the pathways for NO3-/NO2- electrocatalytic reduction.
RESUMO
The activity of Ni (hydr)oxides for the electrochemical evolution of oxygen (OER), a key component of the overall water splitting reaction, is known to be greatly enhanced by the incorporation of Fe. However, a complete understanding of the role of cationic Fe species and the nature of the catalyst surface under reaction conditions remains unclear. Here, using a combination of electrochemical cell and conventional transmission electron microscopy, we show how the surface of NiO electrocatalysts, with initially well-defined surface facets, restructures under applied potential and forms an active NiFe layered double (oxy)hydroxide (NiFe-LDH) when Fe3+ ions are present in the electrolyte. Continued OER under these conditions, however, leads to the creation of additional FeOx aggregates. Electrochemically, the NiFe-LDH formation correlates with a lower onset potential toward the OER, whereas the formation of the FeOx aggregates is accompanied by a gradual decrease in the OER activity. Complementary insight into the catalyst near-surface composition, structure, and chemical state is further extracted using X-ray photoelectron spectroscopy, operando Raman spectroscopy, and operando X-ray absorption spectroscopy together with measurements of Fe uptake by the electrocatalysts using time-resolved inductively coupled plasma mass spectrometry. Notably, we identified that the catalytic deactivation under stationary conditions is linked to the degradation of in situ-created NiFe-LDH. These insights exemplify the complexity of the active state formation and show how its structural and morphological evolution under different applied potentials can be directly linked to the catalyst activation and degradation.
RESUMO
In this study, we have taken advantage of a pulsed CO2 electroreduction reaction (CO2RR) approach to tune the product distribution at industrially relevant current densities in a gas-fed flow cell. We compared the CO2RR selectivity of Cu catalysts subjected to either potentiostatic conditions (fixed applied potential of -0.7 VRHE) or pulsed electrolysis conditions (1 s pulses at oxidative potentials ranging from Ean = 0.6 to 1.5 VRHE, followed by 1 s pulses at -0.7 VRHE) and identified the main parameters responsible for the enhanced product selectivity observed in the latter case. Herein, two distinct regimes were observed: (i) for Ean = 0.9 VRHE we obtained 10% enhanced C2 product selectivity (FEC2H4 = 43.6% and FEC2H5OH = 19.8%) in comparison to the potentiostatic CO2RR at -0.7 VRHE (FEC2H4 = 40.9% and FEC2H5OH = 11%), (ii) while for Ean = 1.2 VRHE, high CH4 selectivity (FECH4 = 48.3% vs 0.1% at constant -0.7 VRHE) was observed. Operando spectroscopy (XAS, SERS) and ex situ microscopy (SEM and TEM) measurements revealed that these differences in catalyst selectivity can be ascribed to structural modifications and local pH effects. The morphological reconstruction of the catalyst observed after pulsed electrolysis with Ean = 0.9 VRHE, including the presence of highly defective interfaces and grain boundaries, was found to play a key role in the enhancement of the C2 product formation. In turn, pulsed electrolysis with Ean = 1.2 VRHE caused the consumption of OH- species near the catalyst surface, leading to an OH-poor environment favorable for CH4 production.
RESUMO
The development of microfabricated liquid cells has enabled dynamic studies of nanostructures within a liquid environment with electron microscopy. While such setups are most commonly found in transmission electron microscope (TEM) holders, their implementation in a scanning electron microscope (SEM) offers intriguing potential for multi-modal studies where the large chamber volume allows for the integration of multiple detectors. Here, we describe an electrochemical liquid cell SEM platform that employs the same cells enclosed by silicon nitride membrane windows found in liquid cell TEM holders and demonstrate the imaging of copper oxide nanoparticles in solution using both backscattered and transmitted electrons. In particular, the transmitted electron images collected at high scattering angles show contrast inversion at liquid layer thicknesses of several hundred nanometers, which can be used to determine the presence of liquid in the cell, while maintaining enough resolution to image nanoparticles that are tens of nanometers in size. Using Monte Carlo simulations, we show that both imaging modes have their advantages for liquid phase imaging and rationalize the contrast inversion observed in the transmitted electron image.
RESUMO
Bismuth is a catalyst material that selectively produces formate during the electrochemical reduction of CO2. While different synthesis strategies have been employed to create electrocatalysts with better performance, the restructuring of bismuth precatalysts during the reaction has also been previously reported. The mechanism behind the change has, however, remained unclear. Here, we show that Bi2O3 nanoparticles supported on Vulcan carbon intrinsically transform into stellated nanosheet aggregates upon exposure to an electrolyte. Liquid cell transmission electron microscopy observations first revealed the gradual restructuring of the nanoparticles into nanosheets in the presence of 0.1 M KHCO3 without an applied potential. Our experiments also associated the restructuring with solubility of bismuth in the electrolyte. While the consequent agglomerates were stable under moderate negative potentials (-0.3 VRHE), they dissolved over time at larger negative potentials (-0.4 and -0.5 VRHE). Operando Raman spectra collected during the reaction showed that under an applied potential, the oxide particles reduced to metallic bismuth, thereby confirming the metal as the working phase for producing formate. These results inform us about the working morphology of these electrocatalysts and their formation and degradation mechanisms.
RESUMO
The key role of morphological defects (e.g., irregular steps and dislocations) on the selectivity of model Cu catalysts for the electrocatalytic reduction of CO2 (CO2RR) is illustrated here. Cu(111) single-crystal surfaces prepared under ultrahigh vacuum (UHV) conditions and presenting similar chemical and local microscopic surface features were found to display different product selectivity during the CO2RR. In particular, changes in selectivity from hydrogen-dominant to hydrocarbon-dominant product distributions were observed based on the number of CO2RR electrolysis pretreatment cycles performed prior to a subsequent UHV surface regeneration treatment, which lead to surfaces with seemingly identical chemical composition and local crystallographic structure. However, significant mesostructural changes were observed through a micron-scale microscopic analysis, including a higher density of irregular steps on the samples producing hydrocarbons. Thus, our findings highlight that step edges are key for C-C coupling in the CO2RR and that not only atomistic but also mesoscale characterization of electrocatalytic materials is needed in order to comprehend complex selectivity trends.
RESUMO
Copper and nitrogen co-doped carbon catalysts exhibit a remarkable behavior during the electrocatalytic CO2 reduction (CO2RR), namely, the formation of metal nanoparticles from Cu single atoms, and their subsequent reversible redispersion. Here we show that the switchable nature of these species holds the key for the on-demand control over the distribution of CO2RR products, a lack of which has thus far hindered the wide-spread practical adoption of CO2RR. By intermitting pulses of a working cathodic potential with pulses of anodic potential, we were able to achieve a controlled fragmentation of the Cu particles and partial regeneration of single atom sites. By tuning the pulse durations, and by tracking the catalyst's evolution using operando quick X-ray absorption spectroscopy, the speciation of the catalyst can be steered toward single atom sites, ultrasmall metal clusters or large metal nanoparticles, each exhibiting unique CO2RR functionalities.
RESUMO
Highly localized dislocations in GaN/ZnO hetero-nanostructures are generated from the residual strain field by lattice mismatches at two interfaces: between the substrate and hetero-nanostructures, and between the ZnO core and GaN shell. The local strain field is measured using tranmission electron microscopy, and the relationship between the nanostructure morphology and the highly localized dislocations is analyzed by a finite element method.
RESUMO
High-performance p-type two-dimensional (2D) transistors are fundamental for 2D nanoelectronics. However, the lack of a reliable method for creating high-quality, large-scale p-type 2D semiconductors and a suitable metallization process represents important challenges that need to be addressed for future developments of the field. Here, we report the fabrication of scalable p-type 2D single-crystalline 2H-MoTe2 transistor arrays with Fermi-level-tuned 1T'-phase semimetal contact electrodes. By transforming polycrystalline 1T'-MoTe2 to 2H polymorph via abnormal grain growth, we fabricated 4-inch 2H-MoTe2 wafers with ultra-large single-crystalline domains and spatially-controlled single-crystalline arrays at a low temperature (~500 °C). Furthermore, we demonstrate on-chip transistors by lithographic patterning and layer-by-layer integration of 1T' semimetals and 2H semiconductors. Work function modulation of 1T'-MoTe2 electrodes was achieved by depositing 3D metal (Au) pads, resulting in minimal contact resistance (~0.7 kΩ·µm) and near-zero Schottky barrier height (~14 meV) of the junction interface, and leading to high on-state current (~7.8 µA/µm) and on/off current ratio (~105) in the 2H-MoTe2 transistors.
RESUMO
Transition metal oxides, which include many stoichiometric variations, are formed into various crystal structures by the atomic arrangement of cations and anions according to stoichiometric composition and are used for a wide range of applications based on this. Among them, cobalt oxide, which has wide crystal structures depending on the lattice points of the anion and the valence of the Co cation, from its hydroxide formula, is attracting a lot of attention due to its interesting catalytic properties due to its crystal structure. In this study, using the synthesized Co(OH)2 nanosheets, the real-time behavior of the phase transition that occurs when continuous heat is applied to the sample has been systematically analyzed using an aberration-corrected scanning transmission electron microscope. The layered Co(OH)2 phase passes through hexagonal CoO and cubic CoO phases to finally become Co nanoparticles, but when the temperature is dropped in the hexagonal phase, spinel Co3O4 is formed. These results suggest that various phases included in transition metal oxides can be selectively implemented according to temperature range control.
RESUMO
Correction for 'Thermally driven phase transition of cobalt hydroxide sheets via cobalt oxides to cobalt nanoparticles' by Aram Yoon et al., Nanoscale Horiz., 2022, https://doi.org/10.1039/d2nh00218c.
RESUMO
The process of encapsulating cobalt nanoparticles using a graphene layer is mainly direct pyrolysis. The encapsulation structure of hybrids prepared in this way improves the catalyst stability, which greatly reduces the leaching of non-metals and prevents metal nanoparticles from growing beyond a certain size. In this study, cobalt particles surrounded by graphene layers were formed by increasing the temperature in a transmission electron microscope, and they were analyzed using scanning transmission electron microscopy (STEM). Synthesized cobalt hydroxide nanosheets were used to obtain cobalt particles using an in-situ heating holder inside a TEM column. The cobalt nanoparticles are surrounded by layers of graphene, and the number of layers increases as the temperature increases. The interlayer spacing of the graphene layers was also investigated using atomic imaging. The success achieved in the encapsulation of metallic nanoparticles in graphene layers paves the way for the design of highly active and reusable heterogeneous catalysts for more challenging molecules.
RESUMO
Catalyst restructuring during electrochemical reactions is a critical but poorly understood process that determines the underlying structure-property relationships during catalysis. In the electrocatalytic reduction of CO2 (CO2RR), it is known that Cu, the most favorable catalyst for hydrocarbon generation, is highly susceptible to restructuring in the presence of halides. Iodide ions, in particular, greatly improved the catalyst performance of Cu foils, although a detailed understanding of the morphological evolution induced by iodide remains lacking. It is also unclear if a similar enhancement transfers to catalyst particles. Here, we first demonstrate that iodide pre-treatment improves the selectivity of hexagonally ordered Cu-island arrays towards ethylene and oxygenate products. Then, the morphological changes in these arrays caused by iodide treatment and during CO2RR are visualized using electrochemical transmission electron microscopy. Our observations reveal that the Cu islands evolve into tetrahedral CuI, which then become 3-dimensional chains of copper nanoparticles under CO2RR conditions. Furthermore, CuI and Cu2O particles re-precipitated when the samples are returned to open circuit potential, implying that iodide and Cu+ species are present within these chains. This work provides detailed insight into the role of iodide, and its impact on the prevailing morphologies that exist during CO2RR.
RESUMO
High-performance van der Waals (vdW) integrated electronics and spintronics require reliable current-carrying capacity. However, it is challenging to achieve high current density and air-stable performance using vdW metals owing to the fast electrical breakdown triggered by defects or oxidation. Here, we report that spin-orbit interacted synthetic PtTe2 layers exhibit significant electrical reliability and robustness in ambient air. The 4-nm-thick PtTe2 synthesized at a low temperature (â¼400°C) shows intrinsic metallic transport behavior and a weak antilocalization effect attributed to the strong spin-orbit scattering. Remarkably, PtTe2 sustains a high current density approaching ≈31.5 MA cm-2, which is the highest value among electrical interconnect candidates under oxygen exposure. Electrical failure is caused by the Joule heating of PtTe2 rather than defect-induced electromigration, which was achievable by the native TeOx passivation. The high-quality growth of PtTe2 and the investigation of its transport behaviors lay out essential foundations for the development of emerging vdW spin-orbitronics.
RESUMO
The edge-to-edge connected metal-semiconductor junction (MSJ) for two-dimensional (2D) transistors has the potential to reduce the contact length while improving the performance of the devices. However, typical 2D materials are thermally and chemically unstable, which impedes the reproducible achievement of high-quality edge contacts. Here we present a scalable synthetic strategy to fabricate low-resistance edge contacts to atomic transistors using a thermally stable 2D metal, PtTe2. The use of PtTe2 as an epitaxial template enables the lateral growth of monolayer MoS2 to achieve a PtTe2-MoS2 MSJ with the thinnest possible, seamless atomic interface. The synthesized lateral heterojunction enables the reduced dimensions of Schottky barriers and enhanced carrier injection compared to counterparts composed of a vertical 3D metal contact. Furthermore, facile position-selected growth of PtTe2-MoS2 MSJ arrays using conventional lithography can facilitate the design of device layouts with high processability, while providing low contact resistivity and ultrashort transfer length on wafer scales.
RESUMO
Understanding the chemical states of individual surface atoms and their arrangements is essential for addressing several current issues such as catalysis, energy stroage/conversion, and environmental protection. Here, we exploit a profile imaging technique to understand the correlation between surface atomic structures and the oxygen evolution reaction (OER) in Mn3O4 nanoparticles. We image surface structures of Mn3O4 nanoparticles and observe surface reconstructions in the (110) and (101) planes. Mn3+ ions at the surface, which are commonly considered as the active sites in OER, disappear from the reconstructed planes, whereas Mn3+ ions are still exposed at the edges of nanoparticles. Our observations suggest that surface reconstructions can deactivate low-index surfaces of Mn oxides in OER. These structural and chemical observations are further validated by density functional theory calculations. This work shows why atomic-scale characterization of surface structures is crucial for a molecular-level understanding of a chemical reaction in oxide nanoparticles.
RESUMO
This study describes the hydrothermal growth of ZnO nanostructures on few-layer graphene sheets and their optical and structural properties. The ZnO nanostructures were grown on graphene sheets of a few layers thick (few-layer graphene) without a seed layer. By changing the hydrothermal growth parameters, including temperature, reagent concentration and pH value of the solution, we readily controlled the dimensions, density and morphology of the ZnO nanostructures. More importantly, single-crystalline ZnO nanostructures grew directly on graphene, as determined by transmission electron microscopy. In addition, from the photoluminescence and cathodoluminescence spectra, strong near-band-edge emission was observed without any deep-level emission, indicating that the ZnO nanostructures grown on few-layer graphene were of high optical quality.
RESUMO
Preparation of edge-rich two-dimensional (2D) transition metal dichalocogenides (TMDs) has been actively investigated with the aim to improve their electrical and catalytic properties. Here, we elucidate the role of potassium ions in oxidation of TMDs and suggest a consequent novel anisotropic etching mechanism driven by self-running oxide droplets. We discover that potassium-mediated oxidation of MoS2 leads to the formation of K-intercalated hexagonal-phase molybdenum oxides (h-KxMoO3), whereas orthorhombic-phase oxides are formed in the absence of potassium ions. Metastable h-KxMoO3 appears to have decomposed into oxide droplets at higher temperature. Self-running of the oxide droplets leads to layer-by-layer anisotropic etching of MoS2 along the armchair direction. The motion of the droplets appears to be triggered by the surface energy instability between the oxide droplets and the underlying MoS2 layer. This study opens new possibilities to design and manufacture novel edge-rich 2D TMDs that do not follow the equilibrium Wulff shape by modulating their oxidation with the assistance of alkali metals and also offers fundamental insights into the interactions between nanodroplets and 2D materials toward edge engineering.
RESUMO
To rationally design effective and stable catalysts for energy conversion applications, we need to understand how they transform under reaction conditions and reveal their underlying structure-property relationships. This is especially important for catalysts used in the electroreduction of carbon dioxide where product selectivity is sensitive to catalyst structure. Here, we present real-time electrochemical liquid cell transmission electron microscopy studies showing the restructuring of copper(I) oxide cubes during reaction. Fragmentation of the solid cubes, re-deposition of new nanoparticles, catalyst detachment and catalyst aggregation are observed as a function of the applied potential and time. Using cubes with different initial sizes and loading, we further correlate this dynamic morphology with the catalytic selectivity through time-resolved scanning electron microscopy measurements and product analysis. These comparative studies reveal the impact of nanoparticle re-deposition and detachment on the catalyst reactivity, and how the increased surface metal loading created by re-deposited nanoparticles can lead to enhanced C2+ selectivity and stability.