Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nano Lett ; 24(6): 1988-1995, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38270106

RESUMO

Underpotential deposition (UPD) is an intriguing means for tailoring the interfacial electronic structure of an adsorbate at a substrate. Here we investigate the impact of UPD on thermoelectricity occurring in molecular tunnel junctions based on alkyl self-assembled monolayers (SAMs). We observed noticeable enhancements in the Seebeck coefficient of alkanoic acid and alkanethiol monolayers, by up to 2- and 4-fold, respectively, upon replacement of a conventional Au electrode with an analogous bimetallic electrode, Cu UPD on Au. Quantum transport calculations indicated that the increased Seebeck coefficients are due to the UPD-induced changes in the shape or position of transmission resonances corresponding to gateway orbitals, which depend on the choice of the anchor group. Our work unveils UPD as a potent means for altering the shape of the tunneling energy barrier at the molecule-electrode contact of alkyl SAM-based junctions and hence enhancing thermoelectric performance.

2.
J Am Chem Soc ; 146(7): 4922-4929, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324711

RESUMO

The study of molecular wires facilitating long-range charge transport is of fundamental interest for the development of various technologies in (bio)organic and molecular electronics. Defining the nature of long-range charge transport is challenging as electrical characterization does not offer the ability to distinguish a tunneling mechanism from the other. Here, we show that investigation of the Seebeck effect provides the ability. We examine the length dependence of the Seebeck coefficient in electrografted bis-terpyridine Ru(II) complex films. The Seebeck coefficient ranges from 307 to 1027 µV/K, with an increasing rate of 95.7 µV/(K nm) as the film thickness increases to 10 nm. Quantum-chemical calculations unveil that the nearly overlapped molecular-orbital energy level of the Ru complex with the Fermi level accounts for the giant thermopower. Landauer-Büttiker probe simulations indicate that the significant length dependence evinces the Seebeck effect dominated by coherent near-resonant tunneling rather than thermal hopping. This study enhances our comprehension of long-range charge transport, paving the way for efficient electronic and thermoelectric materials.

3.
Small ; 20(5): e2305997, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37726226

RESUMO

Functionality in molecular electronics relies on inclusion of molecular orbital energy level within a transmission window. This can be achieved by designing the active molecule with accessible energy levels or by widening the window. While many studies have adopted the first approach, the latter is challenging because defects in the active molecular component cause low breakdown voltages. Here, it is shown that control over the packing structure of monolayer via supramolecular mixing transforms an inert molecule into a highly tunable rectifier. Binary mixed monolayer composed of alkanethiolates with and without carboxylic acid head group as a proof of concept is formed via a surface-exchange reaction. The monolayer withstands high voltages up to |4.5 V| and shows a dynamic rectification-external bias relationship in magnitude and polarity. Sub-highest occupied molecular orbital (HOMO) levels activated by the widened transmission window account for these observations. This work demonstrates that simple supramolecular mixing can imbue new electrical properties in electro-inactive organic molecules.

4.
Small ; : e2403537, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004860

RESUMO

Rechargeable batteries have transformed human lives and modern industry, ushering in new technological advancements such as mobile consumer electronics and electric vehicles. However, to fulfill escalating demands, it is crucial to address several critical issues including energy density, production cost, cycle life and durability, temperature sensitivity, and safety concerns is imperative. Recent research has shed light on the intricate relationship between these challenges and the chemical processes occurring at the electrode-electrolyte interface. Consequently, a novel approach has emerged, utilizing self-assembled molecular layers (SAMLs) of meticulously designed molecules as nanomaterials for interface engineering. This research provides a comprehensive overview of recent studies underscoring the significant roles played by SAML in rechargeable battery applications. It discusses the mechanisms and advantageous features arising from the incorporation of SAML. Moreover, it delineates the remaining challenges in SAML-based rechargeable battery research and technology, while also outlining future perspectives.

5.
Acc Chem Res ; 56(12): 1613-1622, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37276526

RESUMO

ConspectusUnderstanding the thermoelectric effects that convert energy between heat and electricity on a molecular scale is of great interest to the nanoscience community. As electronic devices continue to be miniaturized to nanometer scales, thermoregulation on such devices becomes increasingly critical. In addition, the study of molecular thermoelectricity provides information that cannot be accessed through conventional electrical conductance measurements. The field of molecular thermoelectrics aims to explore thermoelectric effects in electrode-molecule-electrode tunnel junctions and draw inferences on how the (supra)molecular structure of active molecules is associated with their thermopower. In this Account, we introduce a convenient and useful junction technique that enables thermovoltage measurements of one molecule thick films, self-assembled monolayers (SAMs), with reliability, and discuss the atomic-detailed structure-thermopower relations established by the technique. The technique relies on a microelectrode composed of non-Newtonian liquid metal, eutectic gallium-indium (EGaIn) covered with a native gallium oxide layer. The EGaIn electrode makes it possible to form thermoelectric contacts with the delicate structure of SAMs in a noninvasive fashion. A defined interface between SAM and the EGaIn electrode allows time-effective collection of large amounts of thermovoltage data, with great reproducibility, efficiency, and reliable interpretation and statistical analysis of the data. We also highlight recent efforts to utilize the EGaIn technique for probing molecular thermoelectricity and structure-thermopower relations. Using the technique, it was possible to unravel quantum-chemical mechanisms of thermoelectric functions, based on the Mott formula, in SAM-based large-area junctions, which in turn led us to set various hypotheses to boost the Seebeck coefficient. By validating the hypotheses again with the EGaIn technique, we revealed that the thermopower of junction increases through the reduction of the energy offset between accessible molecular orbital energy level and Fermi level or the tuning of broadening of the orbital energy level. Such alterations in the shape of energy topography of junction could be achieved through structural modifications in anchoring group and molecular backbone of SAM, and the bottom electrode. Molecular thermoelectrics offers a unique opportunity to build a well-defined nanoscale system and isolate an effect of interest from others, advancing fundamental understanding of charge transport across individual molecules and molecule-electrode interfaces. In the Account, we showed our recent work involving carefully designed molecular system that are relevant to answering the question of how thermopower differs between the tunneling and thermal-hopping regimes. The field of molecular thermoelectrics needs to address practical application-related issues, particularly molecular degradation in thermal environments. In this regard, we summarized the results highlighting the thermal instability of SAM-based junctions based on a traditional thiol anchor group and how to circumvent this problem. We also discussed the power factor (PF)─a practical parameter representing the efficiency for converting heat into electricity─of SAMs, evaluated using the EGaIn technique. In the Conclusion section of this Account, we present future challenges and perspectives.

6.
Chemistry ; 29(15): e202203536, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36548089

RESUMO

This study examines thermoresponse of odd-even effect in self-assembled monolayers (SAMs) of n-alkanethiolates (SCn , n=3-18) formed on template-stripped gold (AuTS ) using macro- and microscopic analytical techniques, contact angle goniometry (CAG) and vibrational sum frequency generation (VSFG) spectroscopy, respectively. Both CAG and VSFG analyses showed that the odd-even effect in liquid-like SAMs (n=3-9) disappeared upon heating at 50-70 °C, indicating that the heating led to increased structural disorder regardless of odd and even carbon numbers. In contrast, the opposite thermoresponse was observed for odd and even SCn molecules in wax- and solid-like SAMs (n=10-18). Namely, temperature-dependent orientational change of terminal CH3 relative to the surface normal was opposite for the odd and even molecules, thereby leading to mitigated odd-even effect. Our work offers important insights into thermoresponse of supramolecular structure in condensed organic matter.

7.
Nano Lett ; 22(10): 3953-3960, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35575639

RESUMO

Molecular junctions can be miniaturized devices for heat-to-electricity conversion application, yet these operate only in mild thermal environments (less than 323 K) because thiol, the most widely used anchor moiety for chemisorption of active molecules onto surface of electrode, easily undergoes thermal degradation. N-Heterocyclic carbene (NHC) can be an alternative to traditional thiol anchor for producing ultrastable thermoelectric molecular junctions. Our experiments showed that the NHC-based molecular junctions withstood remarkably high temperatures up to 573 K, exhibiting consistent Seebeck effect and thermovoltage up to approximately |1900 µV|. Our work advances our understanding of molecule-electrode contact in the Seebeck effect, providing a roadmap for constructing robust and efficient organic thermoelectric devices.

8.
Nano Lett ; 22(12): 4956-4962, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35666178

RESUMO

This paper describes Li-ion intercalation into a pyrenyl-terminated self-assembled monolayer (SAM) on gold, inspired by the graphite anode in a Li-ion battery, and its effect on tunneling performance in a molecular junction incorporating the SAM. As the concentration of the Li-ion precursor ([LiPF6]) increased from 0 to 10-2 M, the rectification ratio increased to ∼102. Further experiments revealed that the intercalation-induced changes in the orientation of PYR group and in the HOMO energy level account for the enhanced rectification. Treatment with high concentrations of LiPF6 (from 10-2 to 100 M) yielded a considerable solid electrolyte interphase (SEI), mainly composed of LiF, on the surface of the SAM, resulting in the disappearance of rectification. This was attributed to renormalization of the HOMO level back to that of the intact SAM, caused by the SEI layer. Our work demonstrates the interplay among Li-ion intercalation, SEI, and tunneling in the molecular junction, benefiting the research of molecular electronics as well as SAM-based batteries.

9.
Nano Lett ; 22(23): 9693-9699, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36441166

RESUMO

This paper describes the thermoelectric properties of molecular junctions incorporating multinuclear ruthenium alkynyl complexes that comprise Ru(dppe)2 [dppe = 1,2-bis(diphenylphosphino)ethane] fragments and diethylnyl aromatic bridging ligands with thioether anchors. Using the liquid metal technique, the Seebeck coefficient was examined as a function of metal nuclearity, oxidation state, and substituent on the organic ligand backbone. High Seebeck coefficients up to 73 µV/K and appreciable thermal stability with thermovoltage up to ∼3.3 mV at a heating temperature of 423 K were observed. An unusually high proximity of the highest occupied molecular orbital (HOMO) energy level to the Fermi level was revealed to give the remarkable thermoelectric performance as suggested by combined experiments and calculations. This work offers important insights into the development of molecular-scale devices for efficient thermoregulation and heat-to-electricity conversion.

10.
Nano Lett ; 22(18): 7682-7689, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36067367

RESUMO

The Seebeck effect of a molecular junction in a hopping regime or tunneling-to-hopping transition remains uncertain. This paper describes the Seebeck effect in molecular epitaxy films (OPIn where n = 1-9) based on imine condensation between an aryl amine and aldehyde and investigates how the Seebeck coefficient (S, µV/K) varies at the crossover region. The S value of OPIn linearly increased with increasing the molecular length (d, nm), ranging from 7.2 to 38.0 µV/K. The increasing rate changed from 0.99 to 0.38 µV·K-1 Å-1 at d = 3.4 nm (OPI4). Combined experimental and theoretical studies indicated that such a change stems from a tunneling-to-hopping transition, and the small but detectable length-dependence of thermopower in the long molecules originates from the gradual reduction of the tunneling contribution to the broadening of molecular orbital energy level, rather than its relative position to the Fermi level. Our work helps to bridge the gap between bulk and nanoscale thermoelectric systems.


Assuntos
Iminas , Modelos Teóricos , Aldeídos , Aminas
11.
J Am Chem Soc ; 144(18): 7966-7971, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35500106

RESUMO

This Communication describes polarity inversion in molecular rectification and the related mechanism. Using a supramolecular engineered, ultrastable, binary-mixed self-assembled monolayer (SAM) composed of an organic molecular diode (SC11BIPY) and an inert reinforcement molecule (SC8), we probed a rectification ratio (r)-voltage relationship over an unprecedentedly wide voltage range (up to |3.5 V|) with statistical significance. We observed positive polarity in rectification at |1.0 V| (r = 107), followed by disappearance of rectification at ∼|2.25 V|, and then eventual emergence of new rectification with the opposite polarity at ∼|3.5 V| (r = 0.006; 1/r = 162). The polarity inversion occurred with a span over 4 orders of magnitude in r. Low-temperature experiments, electronic structure analysis, and theoretical calculations revealed that the unusually wide voltage range permits access to molecular orbital energy levels that are inaccessible in the traditional narrow voltage regime, inducing the unprecedented in situ inversion of polarity.


Assuntos
Eletrônica
12.
Small ; 18(17): e2105680, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35102698

RESUMO

Single-atom catalysts (SACs) hold the promise of utilizing 100% of the participating atoms in a reaction as active catalytic sites, achieving a remarkable boost in catalytic efficiency. Thus, they present great potential for noble metal-based electrochemical application systems, such as water electrolyzers and fuel cells. However, their practical applications are severely hindered by intrinsic complications, namely atom agglomeration and relocation, originating from the uncontrollably high surface energy of isolated single-atoms (SAs) during postsynthetic treatment processes or catalytic reactions. Extensive efforts have been made to develop new methodologies for strengthening the interactions between SAs and supports, which could ensure the desired stability of the active catalytic sites and their full utilization by SACs. This review covers the recent progress in SACs development while emphasizing the association between the regulation of coordination environments (e.g., coordination atoms, numbers, sites, structures) and the electrocatalytic performance of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The crucial role of coordination chemistry in modifying the intrinsic properties of SACs and manipulating their metal-loading, stability, and catalytic properties is elucidated. Finally, the future challenges of SACS development and the industrial outlook of this field are discussed.


Assuntos
Hidrogênio , Oxigênio , Catálise , Metais/química , Água
13.
J Enzyme Inhib Med Chem ; 37(1): 2434-2451, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36069240

RESUMO

In an effort to discover novel scaffolds of non-nucleotide-derived Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) inhibitors to stimulate the Stimulator of Interferon Genes (STING) pathway, we designed and synthesised pyrrolopyrimidine and pyrrolopyridine derivatives and performed structure-activity relationship (SAR) study. We found 18p possessed high potency (IC50 = 25.0 nM) against ENPP1, and activated STING pathway in a concentration dependent manner. Also, in response to STING pathway activation, cytokines such as IFN-ß and IP-10 were induced by 18p in a concentration dependent manner. Finally, we discovered that 18p causes inhibition of tumour growth in 4T1 syngeneic mouse model. This study provides new insight into the designing of novel ENPP1 inhibitors and warrants further development of small molecule immune modulators for cancer immunotherapy.


Assuntos
Diester Fosfórico Hidrolases , Pirofosfatases , Animais , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Pirimidinas , Pirofosfatases/genética , Pirofosfatases/metabolismo , Pirróis/farmacologia , Relação Estrutura-Atividade
14.
Nano Lett ; 21(7): 3162-3169, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33797252

RESUMO

Electrical breakdown is a critical problem in electronics. In molecular electronics, it becomes more problematic because ultrathin molecular monolayers have delicate and defective structures and exhibit intrinsically low breakdown voltages, which limit device performances. Here, we show that interstitially mixed self-assembled monolayers (imSAMs) remarkably enhance electrical stability of molecular-scale electronic devices without deteriorating function and reliability. The SAM of the sterically bulky matrix (SC11BIPY rectifier) molecule is diluted with a skinny reinforcement (SCn) molecule via the new approach, so-called repeated surface exchange of molecules (ReSEM). Combined experiments and simulations reveal that the ReSEM yields imSAMs wherein interstices between the matrix molecules are filled with the reinforcement molecules and leads to significantly enhanced breakdown voltage inaccessible by traditional pure or mixed SAMs. Thanks to this, bias-driven disappearance and inversion of rectification is unprecedentedly observed. Our work may help to overcome the shortcoming of SAM's instability and expand the functionalities.

15.
Nano Lett ; 21(1): 360-366, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33275442

RESUMO

To develop thermoelectric devices, it is of the utmost importance to design organic building blocks to have efficient thermopower. Whereas conjugated and aromatic molecules with intrinsic narrow band gaps are attractive candidates to achieve efficient thermoelectric properties, saturated molecules are usually avoided owing to intrinsically poor thermopower. Here we demonstrate that thermopower of saturated molecules can be enhanced by superexchange coupling. Specifically, thermoelectric properties of large-area junctions that contain self-assembled monolayers of oligo(ethylene glycol) thiolates and alkanethiolates are compared. Through large-area thermopower measurements using a liquid metal top electrode, we show that the superexchange coupling enhances the Seebeck coefficient and counterintuitively leads to an increase in the Seebeck coefficient with increasing the length in a certain conformation. The improved thermoelectric performance is attributed to the superexchange-induced enhanced ability to mediate metal wave function in junctions. Our work offers new insights for improving the thermoelectric performance of nonconjugated, saturated molecules.

16.
J Am Chem Soc ; 143(4): 2156-2163, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33480255

RESUMO

This paper addresses the mechanism for rectification in molecular tunneling junctions based on alkanethiolates terminated by a bipyridine group complexed with a metal ion, that is, having the structure AuTS-S(CH2)11BIPY-MCl2 (where M = Co or Cu) with a eutectic indium-gallium alloy top contact (EGaIn, 75.5% Ga 24.5% In). Here, AuTS-S(CH2)11BIPY is a self-assembled monolayer (SAM) of an alkanethiolate with 4-methyl-2,2'-bipyridine (BIPY) head groups, on template-stripped gold (AuTS). When the SAM is exposed to cobalt(II) chloride, SAMs of the form AuTS-S(CH2)11BIPY-CoCl2 rectify current with a rectification ratio of r+ = 82.0 at ±1.0 V. The rectification, however, disappears (r+ = 1.0) when the SAM is exposed to copper(II) chloride instead of cobalt. We draw the following conclusions from our experimental results: (i) AuTS-S(CH2)11BIPY-CoCl2 junctions rectify current because only at positive bias (+1.0 V) is there an accessible molecular orbital (the LUMO) on the BIPY-CoCl2 moiety, while at negative bias (-1.0 V), neither the energy level of the HOMO or the LUMO lies between the Fermi levels of the electrodes. (ii) AuTS-S(CH2)11BIPY-CuCl2 junctions do not rectify current because there is an accessible molecular orbital on the BIPY-CuCl2 moiety at both negative and positive bias (the HOMO is accessible at negative bias, and the LUMO is accessible at positive bias). The difference in accessibility of the HOMO levels at -1.0 V causes charge transfer-at negative bias-to take place via Fowler-Nordheim tunneling in BIPY-CoCl2 junctions, and via direct tunneling in BIPY-CuCl2 junctions. This difference in tunneling mechanism at negative bias is the origin of the difference in rectification ratio between BIPY-CoCl2 and BIPY-CuCl2 junctions.

17.
J Am Chem Soc ; 143(9): 3481-3493, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33621090

RESUMO

This paper demonstrates that the molecular conformation (in addition to the composition and structure) of molecules making up self-assembled monolayers (SAMs) influences the rates of charge tunneling (CT) through them, in molecular junctions of the form AuTS/S(CH2)2CONR1R2//Ga2O3/EGaIn, where R1 and R2 are alkyl chains of different length. The lengths of chains R1 and R2 were selected to influence the conformations and conformational homogeneity of the molecules in the monolayer. The conformations of the molecules influence the thickness of the monolayer (i.e. tunneling barrier width) and their rectification ratios at ±1.0 V. When R1 = H, the molecules are well ordered and exist predominantly in trans-extended conformations. When R1 is an alkyl group (e.g., R1 ≠ H), however, their conformations can no longer be all-trans-extended, and the molecules adopt more gauche dihedral angles. This change in the type of conformation decreases the conformational order and influences the rates of tunneling. When R1 = R2, the rates of CT decrease (up to 6.3×), relative to rates of CT observed through SAMs having the same total chain lengths, or thicknesses, when R1 = H. When R1 ≠ H ≠ R2, there is a weaker correlation (relative to that when R1 = H or R1 = R2) between current density and chain length or monolayer thickness, and in some cases the rates of CT through SAMs made from molecules with different R2 groups are different, even when the thicknesses of the SAMs (as determined by XPS) are the same. These results indicate that the thickness of a monolayer composed of insulating, amide-containing alkanethiols does not solely determine the rate of CT, and rates of charge tunneling are influenced by the conformation of the molecules making up the junction.

18.
J Am Chem Soc ; 143(15): 5967-5977, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33834784

RESUMO

This paper describes a surface analysis technique that uses the "EGaIn junction" to measure tunneling current densities (J(V), amps/cm2) through self-assembled monolayers (SAMs) terminated in a chelating group and incorporating different transition metal ions. Comparisons of J(V) measurements between bare chelating groups and chelates are used to characterize the composition of the SAM and infer the dissociation constant (Kd, mol/L), as well as kinetic rate constants (koff, L/mol·s; kon, 1/s) of the reversible chelate-metal reaction. To demonstrate the concept, SAMs of 11-(4-methyl-2,2'-bipyrid-4'-yl (bpy))undecanethiol (HS(CH2)11bpy) were incubated within ethanol solutions of metal salts. After rinsing and drying the surface, measurements of current as a function of incubation time and concentration in solution are used to infer koff, kon, and Kd. X-ray photoelectron spectroscopy (XPS) provides an independent measure of surface composition to confirm inferences from J(V) measurements. Our experiments establish that (i) bound metal ions are stable to the rinsing step as long as the rinsing time, τrinse ≪ 1koff; (ii) the bound metal ions increase the current density at the negative bias and reduce the rectification observed with free bpy terminal groups; (iii) the current density as a function of the concentration of metal ions in solution follows a sigmoidal curve; and (iv) the values of Kd measured using J(V) are comparable to those measured using XPS, but larger than those measured in solution. The EGaIn junction, thus, provides a new tool for the analysis of the composition of the surfaces that undergo reversible chemical reactions with species in solution.

19.
Small ; 17(12): e2005711, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33543557

RESUMO

Molecular tunnel junctions are organic devices miniaturized to the molecular scale. They serve as a versatile toolbox that can systematically examine charge transport behaviors at the atomic level. The electrical conductance of the molecular wire that bridges the two electrodes in a junction is significantly influenced by its chemical structure, and an intrinsically poor conductance is a major barrier for practical applications toward integrating individual molecules into electronic circuitry. Therefore, highly conjugated molecular wires are attractive as active components for the next-generation electronic devices, owing to the narrow highest occupied molecular orbital-lowest occupied molecular orbital gaps provided by their extended π-building blocks. This article aims to highlight the significance of highly conductive molecular wires in molecular electronics, the structures of which are inspired from conductive organic polymers, and presents a body of discussion on molecular wires exhibiting ultralow, zero, or inverted attenuation of tunneling probability at different lengths, along with future directions.


Assuntos
Eletrônica , Polímeros , Condutividade Elétrica , Eletrodos
20.
Angew Chem Int Ed Engl ; 60(44): 23564-23568, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34499388

RESUMO

Force-selective mechanochemical reactions may be important for applications in polymer mechanochemistry, yet it is difficult to achieve such reactions. This paper reports that cis-N-phthalimidoaziridine incorporated into a macromolecular backbone undergoes migration of N-phthalimido group to afford imine under mechanochemical condition and not thermal one. The imine is further hydrolyzed by water bifurcating into amine and aldehyde. These structural transformations are confirmed by 1 H NMR and FT-IR spectroscopic analyses. Computational simulations are conducted for the aziridine mechanophore to propose the mechanism of reaction and define the substrate scope of reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA