Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 147(24): 1823-1842, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37158107

RESUMO

BACKGROUND: Shortly after birth, cardiomyocytes exit the cell cycle and cease proliferation. At present, the regulatory mechanisms for this loss of proliferative capacity are poorly understood. CBX7 (chromobox 7), a polycomb group (PcG) protein, regulates the cell cycle, but its role in cardiomyocyte proliferation is unknown. METHODS: We profiled CBX7 expression in the mouse hearts through quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry. We overexpressed CBX7 in neonatal mouse cardiomyocytes through adenoviral transduction. We knocked down CBX7 by using constitutive and inducible conditional knockout mice (Tnnt2-Cre;Cbx7fl/+ and Myh6-MCM;Cbx7fl/fl, respectively). We measured cardiomyocyte proliferation by immunostaining of proliferation markers such as Ki67, phospho-histone 3, and cyclin B1. To examine the role of CBX7 in cardiac regeneration, we used neonatal cardiac apical resection and adult myocardial infarction models. We examined the mechanism of CBX7-mediated repression of cardiomyocyte proliferation through coimmunoprecipitation, mass spectrometry, and other molecular techniques. RESULTS: We explored Cbx7 expression in the heart and found that mRNA expression abruptly increased after birth and was sustained throughout adulthood. Overexpression of CBX7 through adenoviral transduction reduced proliferation of neonatal cardiomyocytes and promoted their multinucleation. On the other hand, genetic inactivation of Cbx7 increased proliferation of cardiomyocytes and impeded cardiac maturation during postnatal heart growth. Genetic ablation of Cbx7 promoted regeneration of neonatal and adult injured hearts. Mechanistically, CBX7 interacted with TARDBP (TAR DNA-binding protein 43) and positively regulated its downstream target, RBM38 (RNA Binding Motif Protein 38), in a TARDBP-dependent manner. Overexpression of RBM38 inhibited the proliferation of CBX7-depleted neonatal cardiomyocytes. CONCLUSIONS: Our results demonstrate that CBX7 directs the cell cycle exit of cardiomyocytes during the postnatal period by regulating its downstream targets TARDBP and RBM38. This is the first study to demonstrate the role of CBX7 in regulation of cardiomyocyte proliferation, and CBX7 could be an important target for cardiac regeneration.


Assuntos
Proteínas de Ligação a DNA , Miócitos Cardíacos , Animais , Camundongos , Animais Recém-Nascidos , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteínas do Grupo Polycomb/metabolismo
2.
J Mol Cell Cardiol ; 180: 22-32, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37080451

RESUMO

Ischemic cardiovascular disease still remains as a leading cause of morbidity and mortality despite various medical, surgical, and interventional therapy. As such, cell therapy has emerged as an attractive option because it tackles underlying problem of the diseases by inducing neovascularization in ischemic tissue. After overall failure of adult stem or progenitor cells, studies attempted to generate endothelial cells (ECs) from pluripotent stem cells (PSCs). While endothelial cells (ECs) differentiated from PSCs successfully induced vascular regeneration, differentiating volatility and tumorigenic potential is a concern for their clinical applications. Alternatively, direct reprogramming strategies employ lineage-specific factors to change cell fate without achieving pluripotency. ECs have been successfully reprogrammed via ectopic expression of transcription factors (TFs) from endothelial lineage. The reprogrammed ECs induced neovascularization in vitro and in vivo and thus demonstrated their therapeutic value in animal models of vascular insufficiency. Methods of delivering reprogramming factors include lentiviral or retroviral vectors and more clinically relevant, non-integrative adenoviral and episomal vectors. Most studies made use of fibroblast as a source cell for reprogramming, but reprogrammability of other clinically relevant source cell types has to be evaluated. Specific mechanisms and small molecules that are involved in the aforementioned processes tackles challenges associated with direct reprogramming efficiency and maintenance of reprogrammed EC characteristics. After all, this review provides summary of past and contemporary methods of direct endothelial reprogramming and discusses the future direction to overcome these challenges to acquire clinically applicable reprogrammed ECs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Fibroblastos , Isquemia/metabolismo , Reprogramação Celular/genética
3.
Haematologica ; 108(11): 2933-2945, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37317880

RESUMO

Treating patients with refractory acute myeloid leukemia (AML) remains challenging. Currently there is no effective treatment for refractory AML. Increasing evidence has demonstrated that refractory/relapsed AML is associated with leukemic blasts which can confer resistance to anticancer drugs. We have previously reported that high expression of Fms-related tyrosine kinase 4 (FLT4) is associated with increased cancer activity in AML. However, the functional role of FLT4 in leukemic blasts remains unknown. Here, we explored the significance of FLT4 expression in leukemic blasts of refractory patients and mechanisms involved in the survival of AML blasts. Inhibition or absence of FLT4 in AML blasts suppressed homing to bone marrow of immunocompromised mice and blocked engraftment of AML blasts. Moreover, FLT4 inhibition by MAZ51, an antagonist, effectively reduced the number of leukemic cell-derived colony-forming units and increased apoptosis of blasts derived from refractory patients when it was co-treated with cytosine arabinoside under vascular endothelial growth factor C, its ligand. AML patients who expressed high cytosolic FLT4 were linked to an AML-refractory status by internalization mechanism. In conclusion, FLT4 has a biological function in leukemogenesis and refractoriness. This novel insight will be useful for targeted therapy and prognostic stratification of AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Fator C de Crescimento do Endotélio Vascular/uso terapêutico , Prognóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Medula Óssea/metabolismo , Antineoplásicos/uso terapêutico , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/uso terapêutico
4.
Nat Methods ; 16(11): 1169-1175, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591580

RESUMO

Human cortical organoids (hCOs), derived from human embryonic stem cells (hESCs), provide a platform to study human brain development and diseases in complex three-dimensional tissue. However, current hCOs lack microvasculature, resulting in limited oxygen and nutrient delivery to the inner-most parts of hCOs. We engineered hESCs to ectopically express human ETS variant 2 (ETV2). ETV2-expressing cells in hCOs contributed to forming a complex vascular-like network in hCOs. Importantly, the presence of vasculature-like structures resulted in enhanced functional maturation of organoids. We found that vascularized hCOs (vhCOs) acquired several blood-brain barrier characteristics, including an increase in the expression of tight junctions, nutrient transporters and trans-endothelial electrical resistance. Finally, ETV2-induced endothelium supported the formation of perfused blood vessels in vivo. These vhCOs form vasculature-like structures that resemble the vasculature in early prenatal brain, and they present a robust model to study brain disease in vitro.


Assuntos
Encéfalo/irrigação sanguínea , Células-Tronco Embrionárias Humanas/citologia , Organoides/irrigação sanguínea , Engenharia Tecidual/métodos , Animais , Barreira Hematoencefálica , Células Cultivadas , Humanos , Camundongos , Análise de Célula Única , Fatores de Transcrição/fisiologia
5.
Circ Res ; 125(12): 1141-1145, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31804914

RESUMO

Cardiovascular diseases have shown a continuous increase in Korea over the past decade and became the second most common cause of mortality in Korea. Although the number and the amount of total grants for cardiovascular research have increased in Korea, the proportion of the number of grants and total amount allocated for the cardiac/cardiovascular field to all health and medical research fields has not changed much over this period. In addition, the publications related to clinical research have substantially increased in Korea along with the number of nation-wide registries for cardiovascular diseases, but basic and translational research did not show significant growth, requiring new measures to promote basic and translational cardiovascular research in Korea.


Assuntos
Pesquisa Biomédica/tendências , Doenças Cardiovasculares/epidemiologia , Publicações Periódicas como Assunto/tendências , Sistema de Registros , Sociedades Médicas/tendências , Pesquisa Biomédica/métodos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Humanos , República da Coreia/epidemiologia
7.
Circ Res ; 120(5): 848-861, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28003219

RESUMO

RATIONALE: Direct conversion or reprogramming of human postnatal cells into endothelial cells (ECs), bypassing stem or progenitor cell status, is crucial for regenerative medicine, cell therapy, and pathophysiological investigation but has remained largely unexplored. OBJECTIVE: We sought to directly reprogram human postnatal dermal fibroblasts to ECs with vasculogenic and endothelial transcription factors and determine their vascularizing and therapeutic potential. METHODS AND RESULTS: We utilized various combinations of 7 EC transcription factors to transduce human postnatal dermal fibroblasts and found that ER71/ETV2 (ETS variant 2) alone best induced endothelial features. KDR+ (kinase insert domain receptor) cells sorted at day 7 from ER71/ETV2-transduced human postnatal dermal fibroblasts showed less mature but enriched endothelial characteristics and thus were referred to as early reprogrammed ECs (rECs), and did not undergo maturation by further culture. After a period of several weeks' transgene-free culture followed by transient reinduction of ER71/ETV2, early rECs matured during 3 months of culture and showed reduced ETV2 expression, reaching a mature phenotype similar to postnatal human ECs. These were termed late rECs. While early rECs exhibited an immature phenotype, their implantation into ischemic hindlimbs induced enhanced recovery from ischemia. These 2 rECs showed clear capacity for contributing to new vessel formation through direct vascular incorporation in vivo. Paracrine or proangiogenic effects of implanted early rECs played a significant role in repairing hindlimb ischemia. CONCLUSIONS: This study for the first time demonstrates that ER71/ETV2 alone can directly reprogram human postnatal cells to functional, mature ECs after an intervening transgene-free period. These rECs could be valuable for cell therapy, personalized disease investigation, and exploration of the reprogramming process.


Assuntos
Técnicas de Reprogramação Celular/métodos , Células Endoteliais/fisiologia , Fibroblastos/fisiologia , Fatores de Transcrição/biossíntese , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Membro Posterior/irrigação sanguínea , Membro Posterior/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Isquemia/metabolismo , Masculino , Camundongos , Camundongos Nus , Neovascularização Fisiológica/fisiologia , Fatores de Transcrição/genética
8.
Circulation ; 136(20): 1939-1954, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-28972000

RESUMO

BACKGROUND: Human pluripotent stem cell (hPSC)-derived endothelial cells (ECs) have limited clinical utility because of undefined components in the differentiation system and poor cell survival in vivo. Here, we aimed to develop a fully defined and clinically compatible system to differentiate hPSCs into ECs. Furthermore, we aimed to enhance cell survival, vessel formation, and therapeutic potential by encapsulating hPSC-ECs with a peptide amphiphile (PA) nanomatrix gel. METHODS: We induced differentiation of hPSCs into the mesodermal lineage by culturing on collagen-coated plates with a glycogen synthase kinase 3ß inhibitor. Next, vascular endothelial growth factor, endothelial growth factor, and basic fibroblast growth factor were added for endothelial lineage differentiation, followed by sorting for CDH5 (VE-cadherin). We constructed an extracellular matrix-mimicking PA nanomatrix gel (PA-RGDS) by incorporating the cell adhesive ligand Arg-Gly-Asp-Ser (RGDS) and a matrix metalloproteinase-2-degradable sequence. We then evaluated whether the encapsulation of hPSC-CDH5+ cells in PA-RGDS could enhance long-term cell survival and vascular regenerative effects in a hind-limb ischemia model with laser Doppler perfusion imaging, bioluminescence imaging, real-time reverse transcription-polymerase chain reaction, and histological analysis. RESULTS: The resultant hPSC-derived CDH5+ cells (hPSC-ECs) showed highly enriched and genuine EC characteristics and proangiogenic activities. When injected into ischemic hind limbs, hPSC-ECs showed better perfusion recovery and higher vessel-forming capacity compared with media-, PA-RGDS-, or human umbilical vein EC-injected groups. However, the group receiving the PA-RGDS-encapsulated hPSC-ECs showed better perfusion recovery, more robust and longer cell survival (> 10 months), and higher and prolonged angiogenic and vascular incorporation capabilities than the bare hPSC-EC-injected group. Surprisingly, the engrafted hPSC-ECs demonstrated previously unknown sustained and dynamic vessel-forming behavior: initial perivascular concentration, a guiding role for new vessel formation, and progressive incorporation into the vessels over 10 months. CONCLUSIONS: We generated highly enriched hPSC-ECs via a clinically compatible system. Furthermore, this study demonstrated that a biocompatible PA-RGDS nanomatrix gel substantially improved long-term survival of hPSC-ECs in an ischemic environment and improved neovascularization effects of hPSC-ECs via prolonged and unique angiogenic and vessel-forming properties. This PA-RGDS-mediated transplantation of hPSC-ECs can serve as a novel platform for cell-based therapy and investigation of long-term behavior of hPSC-ECs.


Assuntos
Células Endoteliais da Veia Umbilical Humana/transplante , Isquemia/terapia , Metaloproteinase 2 da Matriz/administração & dosagem , Nanoestruturas/administração & dosagem , Oligopeptídeos/administração & dosagem , Células-Tronco Pluripotentes/transplante , Animais , Diferenciação Celular/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Células Endoteliais/fisiologia , Células Endoteliais/transplante , Membro Posterior/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Isquemia/fisiopatologia , Masculino , Camundongos , Camundongos Nus , Células-Tronco Pluripotentes/fisiologia , Distribuição Aleatória , Resultado do Tratamento
9.
Curr Cardiol Rep ; 20(6): 45, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29730842

RESUMO

PURPOSE OF REVIEW: Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) emerged as an important source of cells for cardiovascular regeneration. This review summarizes protocols for generating hPSC-ECs and provides an overview of the current state of the research in clinical application of hPSC-derived ECs. RECENT FINDINGS: Various systems were developed for differentiating hPSCs into the EC lineage. Stepwise two-dimensional systems are now well established, in which various growth factors, small molecules, and coating materials are used at specific developmental stages. Moreover, studies made significant advances in clinical applicability of hPSC-ECs by removing undefined components from the differentiation system, improving the differentiation efficiency, and proving their direct vascular incorporating effects, which contrast with adult stem cells and their therapeutic effects in vivo. Finally, by using biomaterial-mediated delivery, investigators improved the survival of hPSC-ECs to more than 10 months in ischemic tissues and described long-term behavior and safety of in vivo transplanted hPSC-ECs at the histological level. hPSC-derived ECs can be as a critical source of cells for treating advanced cardiovascular diseases. Over the past two decades, substantial improvement has been made in the differentiation systems and their clinical compatibility. In the near future, establishment of fully defined differentiation systems and proof of the advantages of biomaterial-mediated cell delivery, with some additional pre-clinical studies, will move this therapy into a vital option for treating those diseases that cannot be managed by currently available therapies.


Assuntos
Doenças Cardiovasculares/terapia , Diferenciação Celular , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/transplante , Células-Tronco Pluripotentes/citologia , Humanos , Modelos Biológicos , Regeneração , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências
10.
Ann Vasc Surg ; 43: 288-295, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28479437

RESUMO

BACKGROUND: Postsurgical secondary lymphedema is usually a progressive and lifelong condition lacking any curative treatment. The aim of this study was to develop new, simple surgical mouse models of chronic lymphedema, better simulating chronic nature of human postsurgical lymphedema. METHODS: Two experimental mouse models of secondary lymphedema were created surgically without radiation by modifications of the previously described methods: the tail model and the hind limb model. Lymphedema formation was clinically assessed and quantitatively evaluated by measuring circumferences and limb volumes. Postmortem specimens were assessed histologically to examine the efficacy of the models. RESULTS: In the tail models, although a substantial frequency of tail necrosis (30.0%) was noted and the increase in circumference was maintained for only limited times postoperatively depending on the particular tail model, the overall success rate was 65.0%. In the mouse hind limb model, the overall success rate was 88.9%, and the increased circumference and limb volume were maintained over the entire study period of 8 weeks. The overall success rate of the mouse hind limb model was significantly higher than that of the mouse tail model(s). CONCLUSIONS: We have successfully established modified mouse tail and hind limb lymphedema models via only surgical techniques without radiation, which have characteristics of chronic secondary lymphedema. The mouse hind limb model has a higher success rate than the mouse tail model and has advantages of having the healthy contralateral hind limbs as an internal control.


Assuntos
Vasos Linfáticos/cirurgia , Linfedema/etiologia , Animais , Doença Crônica , Modelos Animais de Doenças , Feminino , Membro Posterior , Vasos Linfáticos/patologia , Linfedema/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Cauda , Fatores de Tempo
12.
Circulation ; 128(17): 1897-909, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23995537

RESUMO

BACKGROUND: Although methods for generating cardiomyocytes from pluripotent stem cells have been reported, current methods produce heterogeneous mixtures of cardiomyocytes and noncardiomyocyte cells. Here, we report an entirely novel system in which pluripotent stem cell-derived cardiomyocytes are purified by cardiomyocyte-specific molecular beacons (MBs). MBs are nanoscale probes that emit a fluorescence signal when hybridized to target mRNAs. METHOD AND RESULTS: Five MBs targeting mRNAs of either cardiac troponin T or myosin heavy chain 6/7 were generated. Among 5 MBs, an MB that targeted myosin heavy chain 6/7 mRNA (MHC1-MB) identified up to 99% of HL-1 cardiomyocytes, a mouse cardiomyocyte cell line, but <3% of 4 noncardiomyocyte cell types in flow cytometry analysis, which indicates that MHC1-MB is specific for identifying cardiomyocytes. We delivered MHC1-MB into cardiomyogenically differentiated pluripotent stem cells through nucleofection. The detection rate of cardiomyocytes was similar to the percentages of cardiac troponin T- or cardiac troponin I-positive cardiomyocytes, which supports the specificity of MBs. Finally, MHC1-MB-positive cells were sorted by fluorescence-activated cell sorter from mouse and human pluripotent stem cell differentiating cultures, and ≈97% cells expressed cardiac troponin T or cardiac troponin I as determined by flow cytometry. These MB-based sorted cells maintained their cardiomyocyte characteristics, which was verified by spontaneous beating, electrophysiological studies, and expression of cardiac proteins. When transplanted in a myocardial infarction model, MB-based purified cardiomyocytes improved cardiac function and demonstrated significant engraftment for 4 weeks without forming tumors. CONCLUSIONS: We developed a novel cardiomyocyte selection system that allows production of highly purified cardiomyocytes. These purified cardiomyocytes and this system can be valuable for cell therapy and drug discovery.


Assuntos
Transplante de Células/métodos , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , RNA Mensageiro/isolamento & purificação , Potenciais de Ação/fisiologia , Animais , Biomarcadores , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Citometria de Fluxo/métodos , Humanos , Camundongos , Miócitos Cardíacos/fisiologia , Cadeias Pesadas de Miosina/genética , Nanotecnologia , Conformação de Ácido Nucleico , Células-Tronco Pluripotentes/fisiologia , Sondas RNA/química , Sondas RNA/isolamento & purificação , RNA Mensageiro/química , Troponina I/genética , Troponina T/genética
13.
PLoS Genet ; 7(6): e1002154, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21731508

RESUMO

Covalent modification of DNA distinguishes cellular identities and is crucial for regulating the pluripotency and differentiation of embryonic stem (ES) cells. The recent demonstration that 5-methylcytosine (5-mC) may be further modified to 5-hydroxymethylcytosine (5-hmC) in ES cells has revealed a novel regulatory paradigm to modulate the epigenetic landscape of pluripotency. To understand the role of 5-hmC in the epigenomic landscape of pluripotent cells, here we profile the genome-wide 5-hmC distribution and correlate it with the genomic profiles of 11 diverse histone modifications and six transcription factors in human ES cells. By integrating genomic 5-hmC signals with maps of histone enrichment, we link particular pluripotency-associated chromatin contexts with 5-hmC. Intriguingly, through additional correlations with defined chromatin signatures at promoter and enhancer subtypes, we show distinct enrichment of 5-hmC at enhancers marked with H3K4me1 and H3K27ac. These results suggest potential role(s) for 5-hmC in the regulation of specific promoters and enhancers. In addition, our results provide a detailed epigenomic map of 5-hmC from which to pursue future functional studies on the diverse regulatory roles associated with 5-hmC.


Assuntos
Citosina/análogos & derivados , Células-Tronco Embrionárias/citologia , Epigenômica , Genoma Humano , 5-Metilcitosina/metabolismo , Sítios de Ligação , Linhagem Celular , Mapeamento Cromossômico , Citosina/metabolismo , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Biblioteca Gênica , Heterocromatina/química , Histonas/metabolismo , Humanos , Immunoblotting , Metáfase , Regiões Promotoras Genéticas , Alinhamento de Sequência , Fatores de Transcrição/metabolismo
14.
Biomaterials ; 305: 122450, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38169190

RESUMO

In vitro atherosclerosis models are essential to evaluate therapeutics before in vivo and clinical studies, but significant limitations remain, such as the lack of three-layer vascular architecture and limited atherosclerotic features. Moreover, no scalable 3D atherosclerosis model is available for making high-throughput assays for therapeutic evaluation. Herein, we report an in vitro 3D three-layer nanomatrix vascular sheet with critical atherosclerosis multi-features (VSA), including endothelial dysfunction, monocyte recruitment, macrophages, extracellular matrix remodeling, smooth muscle cell phenotype transition, inflammatory cytokine secretion, foam cells, and calcification initiation. Notably, we present the creation of high-throughput functional assays with VSAs and the use of these assays for evaluating therapeutics for atherosclerosis treatment. The therapeutics include conventional drugs (statin and sirolimus), candidates for treating atherosclerosis (curcumin and colchicine), and potential gene therapy (miR-146a-loaded liposomes). The high efficiency and flexibility of the scalable VSA functional assays should facilitate drug discovery and development for atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Aterosclerose/tratamento farmacológico , Macrófagos , Células Espumosas , Monócitos , Expressão Gênica , Miócitos de Músculo Liso
15.
Nat Biomed Eng ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698155

RESUMO

The adenovirus-mediated somatic transfer of the embryonic T-box transcription factor 18 (TBX18) gene can convert chamber cardiomyocytes into induced pacemaker cells. However, the translation of therapeutic TBX18-induced cardiac pacing faces safety challenges. Here we show that the myocardial expression of synthetic TBX18 mRNA in animals generates de novo pacing and limits innate and inflammatory immune responses. In rats, intramyocardially injected mRNA remained localized, whereas direct myocardial injection of an adenovirus carrying a reporter gene resulted in diffuse expression and in substantial spillover to the liver, spleen and lungs. Transient expression of TBX18 mRNA in rats led to de novo automaticity and pacemaker properties and, compared with the injection of adenovirus, to substantial reductions in the expression of inflammatory genes and in activated macrophage populations. In rodent and clinically relevant porcine models of complete heart block, intramyocardially injected TBX18 mRNA provided rate-adaptive cardiac pacing for one month that strongly correlated with the animal's sinus rhythm and physical activity. TBX18 mRNA may aid the development of biological pacemakers.

16.
Circ Res ; 108(11): 1340-7, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21493893

RESUMO

RATIONALE: Bone marrow (BM)-derived mesenchymal stem cells (MSCs) hold great promise for cardiovascular cell therapy owing to their multipotency and culture expandability. OBJECTIVE: The aim of the study was to investigate whether MSCs can treat experimental acute myocardial infarction (MI) and diabetic neuropathy. METHODS AND RESULTS: We isolated mononuclear cells from mouse BM and cultured MSCs in a conventional manner. Flow cytometry analyses of these cultured cells at passage 4 showed expression of typical MSC markers such as CD44 and CD29, but not hematopoietic markers such as c-kit, flk1, and CD34. To determine the therapeutic effects of MSCs, we injected MSCs into the peri-infarct area after ligation of the left anterior descending coronary arteries of mice and, as separate experiments, injected the same batch of MSCs into hindlimb muscles of mice with diabetic neuropathy. During the follow-up at 4 to 8 weeks after cell transplantation, growing tumors were observed in 30% of hearts in the MI model, and in 46% of hindlimbs in the diabetic neuropathy model. Histological examination of the tumors revealed hypercelluarity, pleomorphic nucleoli, cytological atypia and necrosis, and positive staining for α-smooth muscle actin, indicative of malignant sarcoma with myogenic differentiation. Chromosomal analysis of these MSCs showed multiple chromosomal aberrations including fusion, fragmentation, and ring formation. CONCLUSIONS: Genetically unmodified MSCs can undergo chromosomal abnormalities even at early passages and form malignant tumors when transplanted in vivo. These results suggest that careful monitoring of chromosomal status is warranted when in vitro expanded MSCs are used for cell therapy such as for MI.


Assuntos
Neuropatias Diabéticas/terapia , Neoplasias Cardíacas/etiologia , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Neoplasias Musculares/etiologia , Infarto do Miocárdio/terapia , Sarcoma/etiologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/transplante , Animais , Células da Medula Óssea/citologia , Transformação Celular Neoplásica , Células Cultivadas , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
JAMA ; 310(24): 2631-9, 2013 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-24247554

RESUMO

IMPORTANCE: Many patients with peripheral artery disease (PAD) have walking impairment despite therapy. Experimental studies in animals demonstrate improved perfusion in ischemic hind limb after mobilization of bone marrow progenitor cells (PCs), but whether this is effective in patients with PAD is unknown. OBJECTIVE: To investigate whether therapy with granulocyte-macrophage colony-stimulating factor (GM-CSF) improves exercise capacity in patients with intermittent claudication. DESIGN, SETTING, AND PARTICIPANTS: In a phase 2 double-blind, placebo-controlled study, 159 patients (median [SD] age, 64 [8] years; 87% male, 37% with diabetes) with intermittent claudication were enrolled at medical centers affiliated with Emory University in Atlanta, Georgia, between January 2010 and July 2012. INTERVENTIONS: Participants were randomized (1:1) to received 4 weeks of subcutaneous injections of GM-CSF (leukine), 500 µg/day 3 times a week, or placebo. Both groups were encouraged to walk to claudication daily. MAIN OUTCOMES AND MEASURES: The primary outcome was peak treadmill walking time (PWT) at 3 months. Secondary outcomes were PWT at 6 months and changes in circulating PC levels, ankle brachial index (ABI), and walking impairment questionnaire (WIQ) and 36-item Short-Form Health Survey (SF-36) scores. RESULTS: Of the 159 patients randomized, 80 were assigned to the GM-CSF group. The mean (SD) PWT at 3 months increased in the GM-CSF group from 296 (151) seconds to 405 (248) seconds (mean change, 109 seconds [95% CI, 67 to 151]) and in the placebo group from 308 (161) seconds to 376 (182) seconds (change of 56 seconds [95% CI, 14 to 98]), but this difference was not significant (mean difference in change in PWT, 53 seconds [95% CI, -6 to 112], P = .08). At 3 months, compared with placebo, GM-CSF improved the physical functioning subscore of the SF-36 questionnaire by 11.4 (95% CI, 6.7 to 16.1) vs 4.8 (95% CI, -0.1 to 9.6), with a mean difference in change for GM-CSF vs placebo of 7.5 (95% CI, 1.0 to 14.0; P = .03). Similarly, the distance score of the WIQ improved by 12.5 (95% CI, 6.4 to 18.7) vs 4.8 (95% CI, -0.2 to 9.8) with GM-CSF compared with placebo (mean difference in change, 7.9 [95% CI, 0.2 to 15.7], P = .047). There were no significant differences in the ABI, WIQ distance and speed scores, claudication onset time, or mental or physical component scores of the SF-36 between the groups. CONCLUSIONS AND RELEVANCE: Therapy with GM-CSF 3 times a week did not improve treadmill walking performance at the 3-month follow-up. The improvements in some secondary outcomes with GM-CSF suggest that it may warrant further study in patients with claudication. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01041417.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Mobilização de Células-Tronco Hematopoéticas , Claudicação Intermitente/terapia , Doença Arterial Periférica/terapia , Idoso , Método Duplo-Cego , Teste de Esforço , Feminino , Humanos , Injeções Subcutâneas , Masculino , Pessoa de Meia-Idade , Células-Tronco , Resultado do Tratamento , Caminhada
18.
Cells ; 12(11)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37296674

RESUMO

Red blood cell (RBC) transfusion is a lifesaving medical procedure that can treat patients with anemia and hemoglobin disorders. However, the shortage of blood supply and risks of transfusion-transmitted infection and immune incompatibility present a challenge for transfusion. The in vitro generation of RBCs or erythrocytes holds great promise for transfusion medicine and novel cell-based therapies. While hematopoietic stem cells and progenitors derived from peripheral blood, cord blood, and bone marrow can give rise to erythrocytes, the use of human pluripotent stem cells (hPSCs) has also provided an important opportunity to obtain erythrocytes. These hPSCs include both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). As hESCs carry ethical and political controversies, hiPSCs can be a more universal source for RBC generation. In this review, we first discuss the key concepts and mechanisms of erythropoiesis. Thereafter, we summarize different methodologies to differentiate hPSCs into erythrocytes with an emphasis on the key features of human definitive erythroid lineage cells. Finally, we address the current limitations and future directions of clinical applications using hiPSC-derived erythrocytes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Diferenciação Celular , Eritrócitos , Células-Tronco Hematopoéticas
19.
NPJ Regen Med ; 8(1): 46, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626061

RESUMO

Red blood cell (RBC) generation from human pluripotent stem cells (PSCs) offers potential for innovative cell therapy in regenerative medicine as well as developmental studies. Ex vivo erythropoiesis from PSCs is currently limited by the low efficiency of functional RBCs with ß-globin expression in culture systems. During induction of ß-globin expression, the absence of a physiological microenvironment, such as a bone marrow niche, may impair cell maturation and lineage specification. Here, we describe a simple and reproducible culture system that can be used to generate erythroblasts with ß-globin expression. We prepared a two-dimensional defined culture with ferric citrate treatment based on definitive hemogenic endothelium (HE). Floating erythroblasts derived from HE cells were primarily CD45+CD71+CD235a+ cells, and their number increased remarkably upon Fe treatment. Upon maturation, the erythroblasts cultured in the presence of ferric citrate showed high transcriptional levels of ß-globin and enrichment of genes associated with heme synthesis and cell cycle regulation, indicating functionality. The rapid maturation of these erythroblasts into RBCs was observed when injected in vivo, suggesting the development of RBCs that were ready to grow. Hence, induction of ß-globin expression may be explained by the effects of ferric citrate that promote cell maturation by binding with soluble transferrin and entering the cells.Taken together, upon treatment with Fe, erythroblasts showed advanced maturity with a high transcription of ß-globin. These findings can help devise a stable protocol for the generation of clinically applicable RBCs.

20.
J Exp Med ; 203(1): 153-63, 2006 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-16401693

RESUMO

The cell surface receptor alpha4 integrin plays a critical role in the homing, engraftment, and maintenance of hematopoietic progenitor cells (HPCs) in the bone marrow (BM). Down-regulation or functional blockade of alpha4 integrin or its ligand vascular cell adhesion molecule-1 mobilizes long-term HPCs. We investigated the role of alpha4 integrin in the mobilization and homing of BM endothelial progenitor cells (EPCs). EPCs with endothelial colony-forming activity in the BM are exclusively alpha4 integrin-expressing cells. In vivo, a single dose of anti-alpha4 integrin antibody resulted in increased circulating EPC counts for 3 d. In hindlimb ischemia and myocardial infarction, systemically administered anti-alpha4 integrin antibody increased recruitment and incorporation of BM EPCs in newly formed vasculature and improved functional blood flow recovery and tissue preservation. Interestingly, BM EPCs that had been preblocked with anti-alpha4 integrin ex vivo or collected from alpha4 integrin-deficient mice incorporated as well as control cells into the neovasculature in ischemic sites, suggesting that alpha4 integrin may be dispensable or play a redundant role in EPC homing to ischemic tissue. These data indicate that functional disruption of alpha4 integrin may represent a potential angiogenic therapy for ischemic disease by increasing the available circulating supply of EPCs.


Assuntos
Integrina alfa4/metabolismo , Isquemia Miocárdica/fisiopatologia , Neovascularização Fisiológica , Células-Tronco/fisiologia , Animais , Medula Óssea , Movimento Celular , Células Endoteliais , Integrina alfa4/genética , Masculino , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA