Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Comput Chem ; 45(11): 738-751, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38112413

RESUMO

Elucidating protein conformational changes is essential because conformational changes are closely related to the functions of proteins. Cryo-electron microscopy (cryo-EM) experiment can be used to reconstruct protein conformational changes via a method that involves using the experimental data (two-dimensional protein images). In this study, a reconstruction method, referred to as the "four-dimensional imaging," was proposed. In our four-dimensional imaging technique, the protein conformational change was obtained using the two-dimensional protein images (the three-dimensional electron density maps used in previously proposed techniques were not used). The protein conformation for each two-dimensional protein image was obtained using our original protocol with molecular dynamics simulations. Using a manifold-learning technique and two-dimensional protein images, the protein conformations were arranged according to the conformational change of the protein. By arranging the protein conformations according to the arrangement of the protein images, four-dimensional imaging is constructed. A simulation for a cryo-EM experiment demonstrated the validity of our four-dimensional imaging technique.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Microscopia Crioeletrônica/métodos , Conformação Proteica
2.
Chemistry ; 29(34): e202300488, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37070368

RESUMO

Multiple aromatic residues assemble to form higher ordered structures known as "aromatic clusters" in proteins and play essential roles in biological systems. However, the stabilization mechanism and dynamic behavior of aromatic clusters remain unclear. This study describes designed aromatic interactions confined within a protein cage to reveal how aromatic clusters affect protein stability. The crystal structures and calorimetric measurements indicate that the formation of inter-subunit phenylalanine clusters enhance the interhelix interactions and increase the melting temperature. Theoretical calculations suggest that this is caused by the transformation of the T-shaped geometry into π-π stacking at high temperatures, and the hydration entropic gain. Thus, the isolated nanoenvironment in a protein cage allows reconstruction and detailed analysis of multiple clustering residues for elucidating the mechanisms of various biomolecular interactions in nature which can be applied to design of bionanomaterials.


Assuntos
Fenilalanina , Proteínas , Proteínas/química , Fenilalanina/química , Temperatura , Conformação Molecular , Estabilidade Proteica
3.
J Chem Inf Model ; 62(18): 4460-4473, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36068974

RESUMO

Among the factors affecting biological processes such as protein folding and ligand binding, hydration, which is represented by a three-dimensional water site distribution function around the protein, is crucial. The typical methods for computing the distribution functions, including molecular dynamics simulations and the three-dimensional reference interaction site model (3D-RISM) theory, require a long computation time ranging from hours to tens of hours. Here, we propose a deep learning (DL) model that rapidly estimates the distribution functions around proteins obtained using the 3D-RISM theory from the protein 3D structure. The distribution functions predicted using our DL model are in good agreement with those obtained using the 3D-RISM theory. Particularly, the coefficient of determination between the distribution function obtained by the DL model and that obtained using the 3D-RISM theory is approximately 0.98. Furthermore, using a graphics processing unit, the prediction by the DL model is completed in less than 1 min, more than 2 orders of magnitude faster than the calculation time of the 3D-RISM theory. The position of water molecules around the protein was estimated based on the distribution function obtained by our DL model, and the position of waters estimated by our DL model was in good agreement with that of water molecules estimated using the 3D-RISM theory and of crystallographic waters. Therefore, our DL model provides a practical and efficient way to calculate the three-dimensional water site distribution functions and to estimate the position of water molecules around the protein. The program called "gr Predictor" is available under the GNU General Public License from https://github.com/YoshidomeGroup-Hydration/gr-predictor.


Assuntos
Aprendizado Profundo , Ligantes , Simulação de Dinâmica Molecular , Proteínas , Termodinâmica , Água/química
4.
J Comput Chem ; 41(28): 2406-2419, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32815201

RESUMO

Hydration is a critical factor in the ligand binding process. Herein, to examine the hydration states of ligand binding sites, the three-dimensional distribution function for the water oxygen site, gO (r), is computed for 3,706 ligand-free protein structures based on the corresponding small molecule-protein complexes using the 3D-RISM theory. For crystallographic waters (CWs) close to the ligand, gO (r) reveals that several CWs are stabilized by interaction networks formed between the ligand, CW, and protein. Based on the gO (r) for the crystallographic binding pose of the ligand, hydrogen bond interactions are dominant in the highly hydrated regions while weak interactions such as CH-O are dominant in the moderately hydrated regions. The polar heteroatoms of the ligand occupy the highly hydrated and moderately hydrated regions in the crystallographic (correct) and wrongly docked (incorrect) poses, respectively. Thus, the gO (r) of polar heteroatoms may be used to distinguish the correct binding poses.


Assuntos
Proteínas/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Solventes/química , Termodinâmica , Água/química
5.
Nano Lett ; 18(8): 5192-5197, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29990436

RESUMO

Cuprous oxide (Cu2O) particles obtained by surfactant-assisted liquid-phase synthesis have cuboid shapes but the internal structures are difficult to be visualized by electron microscopy. Herein, we investigated the internal structures of numerous individual Cu2O particles with submicrometer dimensions by X-ray diffraction imaging (XDI) using X-ray free-electron laser (XFEL) pulses. The reconstructed two-dimensional electron density maps, which displayed inhomogeneous internal structures, were divided into five classes characterized by the positions and shapes of high and low electron density areas. Further analysis of the maps in each class by a manifold learning algorithm revealed that the internal structures of Cu2O particles varied in correlation with total electron density while retaining the characteristics within each class. On the basis of the analyses, we proposed a growth mechanism to yield the inhomogeneity in the internal structures of Cu2O particles in surfactant-mediated liquid-phase synthesis.

6.
J Chem Phys ; 142(17): 175101, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25956125

RESUMO

The hydration free energy (HFE) is a crucially important physical quantity to discuss various chemical processes in aqueous solutions. Although an explicit-solvent computation with molecular dynamics (MD) simulations is a preferable treatment of the HFE, huge computational load has been inevitable for large, complex solutes like proteins. In the present paper, we propose an efficient computation method for the HFE. In our method, the HFE is computed as a sum of 〈UUV〉/2 (〈UUV〉 is the ensemble average of the sum of pair interaction energy between solute and water molecule) and the water reorganization term mainly reflecting the excluded volume effect. Since 〈UUV〉 can readily be computed through a MD of the system composed of solute and water, an efficient computation of the latter term leads to a reduction of computational load. We demonstrate that the water reorganization term can quantitatively be calculated using the morphometric approach (MA) which expresses the term as the linear combinations of the four geometric measures of a solute and the corresponding coefficients determined with the energy representation (ER) method. Since the MA enables us to finish the computation of the solvent reorganization term in less than 0.1 s once the coefficients are determined, the use of the MA enables us to provide an efficient computation of the HFE even for large, complex solutes. Through the applications, we find that our method has almost the same quantitative performance as the ER method with substantial reduction of the computational load.


Assuntos
Simulação por Computador , Modelos Químicos , Água/química , Modelos Lineares , Conformação Proteica , Dobramento de Proteína , Proteínas/química , Soluções/química , Solventes/química , Termodinâmica , Fatores de Tempo
7.
Phys Chem Chem Phys ; 14(42): 14554-66, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23014986

RESUMO

A clue to the physical origin of the hydrophobicity is in the experimental observations, which show that it is weakened at low temperatures. By considering a solvophobic model protein immersed in water and three species of simple solvents, we analyze the temperature dependence of the changes in free energy, energy, and entropy of the solvent upon protein unfolding. The angle-dependent and radial-symmetric integral equation theories and the morphometric approach are employed in the analysis. Each of the changes is decomposed into two terms, which depend on the excluded volume and on the area and curvature of the solvent-accessible surface, respectively. The excluded-volume term of the entropy change is further decomposed into two components representing the protein-solvent pair correlation and the protein-solvent-solvent triplet and higher-order correlation, respectively. We show that water crowding in the system becomes more serious upon protein unfolding but this effect becomes weaker as the temperature is lowered. If the hydrophobicity originated from the water structuring near a nonpolar solute, it would be strengthened upon lowering of the temperature. Among the three species of simple solvents, considerable weakening of the solvophobicity at low temperatures is observed only for the solvent where the particles interact through a strong attractive potential and the particle size is as small as that of water. Even in the case of this solvent, however, cold denaturation of a protein cannot be reproduced. It would be reproducible if the attractive potential was substantially enhanced, but such enhancement causes the appearance of the metastability limit for a single liquid phase.


Assuntos
Temperatura Baixa , Proteínas/química , Físico-Química , Interações Hidrofóbicas e Hidrofílicas , Desnaturação Proteica , Desdobramento de Proteína , Solventes/química , Água/química
8.
J Chem Phys ; 137(3): 035102, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22830731

RESUMO

We have recently proposed a novel picture of the rotation mechanism for F(1)-ATPase [T. Yoshidome, Y. Ito, M. Ikeguchi, and M. Kinoshita, J. Am. Chem. Soc. 133, 4030 (2011)]. In the picture, the asymmetric packing in F(1)-ATPase, originating from the water-entropy effect, plays the key role in the rotation. Here, we analyze the differences between the experimentally determined structures of yeast F(1)-ATPase before and after 16° rotation of the γ subunit with the emphasis on the water-entropy effect. For each of these structures, we calculate the hydration entropies of three sub-complexes comprising the γ subunit, one of the ß subunits, and two α subunits adjacent to them. The ß(E), ß(TP), and ß(DP) subunits are involved in sub-complexes I, II, and III, respectively. The calculation is performed using a hybrid of the angle-dependent integral equation theory combined with the molecular model for water and the morphometric approach. The absolute value of the hydration entropy is in the following order: sub-complex I > sub-complex II > sub-complex III. The packing efficiency of the sub-complex follows the opposite order. The rotation gives rise to less efficient packing in sub-complex III and a corresponding water-entropy loss. However, the other two sub-complexes, accompanying water-entropy gains, become more efficiently packed. These results are consistent with our picture of the rotation mechanism, supporting its validity. The water-entropy analysis shows that the interfaces of α(DP)-ß(DP) and α(E)-ß(E) become more open after the rotation, which is in accord with the experimental observation.


Assuntos
Subunidades Proteicas/química , ATPases Translocadoras de Prótons/química , Saccharomyces cerevisiae/enzimologia , Água/química , Entropia , Saccharomyces cerevisiae/química
9.
Proteins ; 79(7): 2161-71, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21557318

RESUMO

In this study, free-energy function (FEF) for discriminating the native fold of a protein from misfolded decoys was investigated. It is a physics-based function using an all-atom model, which comprises the hydration entropy (HE) and the total dehydration penalty (TDP). The HE is calculated using a hybrid of a statistical-mechanical theory applied to a molecular model for water and the morphometric approach. The energetic component is suitably taken into account in a simple manner as the TDP. On the basis of the results from a careful test of the FEF, which have been performed for 118 proteins in representative decoy sets, we show that its performance is distinctly superior to that of any other function. The FEF varies largely from model to model for the candidate models for the native structure (NS) obtained from nuclear magnetic resonance experiments, but we can find models or a model for which the FEF becomes lower than for any of the decoy structures. A decoy set is not suited to the test of a free-energy or potential function in cases where a protein isolated from a protein complex is considered and the structure in the complex is used as the model NS of the isolated protein without any change or where portions of the terminus sides of a protein are removed and the percentage of the secondary structures lost due to the removal is significantly high. As these findings are made possible, we can assume that our FEF precisely captures the features of the true NS.


Assuntos
Dobramento de Proteína , Proteínas , Modelos Químicos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Proteínas/metabolismo , Termodinâmica
10.
J Am Chem Soc ; 133(11): 4030-9, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21348521

RESUMO

We propose a novel picture of the rotation mechanism of F(1)-ATPase, a rotary-motor protein complex. Entropy, which originates from the translational displacement of water molecules, is treated as the key factor in the proposal. We calculate the water entropy gains upon formation of the α-ß, α-γ, and ß-γ subunit pairs. The gain is given as the difference between the hydration entropy of a subunit pair and the sum of the hydration entropies of the separate subunits forming the pair. The calculation is made using a hybrid of a statistical-mechanical theory for molecular liquids and morphometric approach. The water entropy gain is considered as a measure of tightness of the packing at each subunit interface. The results are highly correlated with the numbers of stable contacts at the subunit interfaces estimated by a molecular dynamics simulation. We also calculate the hydration entropies of three different subcomplexes comprising the γ subunit, one of the ß subunits, and two α subunits adjacent to them. The major finding is that the packing in F(1)-ATPase is highly asymmetrical, and this asymmetry is ascribed to the water entropy effect. We discuss how the rotation of the γ subunit is induced by such chemical processes as ATP binding, ATP hydrolysis, and release of the products. In our picture, the asymmetrical packing plays crucially important roles, and the rotation is driven by the water entropy effect.


Assuntos
Entropia , ATPases Translocadoras de Prótons/química , Água/química , Modelos Moleculares
11.
Phys Chem Chem Phys ; 13(36): 16236-46, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21842056

RESUMO

"Hot spots" are residues accounting for the majority of the protein-protein binding free energy (BFE) despite that they comprise only a small fraction of the protein-protein interface. A hot spot can be found experimentally by measuring the BFE change upon mutating it to alanine: the mutation gives rise to a significantly large increase in the BFE. Theoretical prediction of hot spots is an enthusiastic subject in biophysics, biochemistry, and bioinformatics. For the development of a reliable prediction method, it is essential to understand the physical origin of hot spots. To this end, we calculate the water-entropy gains upon binding both for a wild-type complex and for its mutant complex using a hybrid method of the angle-dependent integral equation theory applied to a molecular model for water and the morphometric approach. We note that this type of calculation has never been employed in the previously reported methods. The BFE change due to alanine mutation is evaluated only from the change in the water-entropy gain with no parameters fitted to the experimental data. It is shown that the overall performance of predicting hot spots in our method is higher than that in Robetta, a standard free-energy-based method using fitting parameters, when the most widely used criterion for defining an actual hot spot is adopted. This result strongly suggests that the water-entropy effect we calculate is the key factor governing basic physics of hot spots.


Assuntos
Proteínas/química , Água/química , Algoritmos , Bases de Dados de Proteínas , Entropia , Mutação , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas/genética
12.
J Chem Phys ; 134(2): 025101, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21241149

RESUMO

We have recently proposed a measure of the thermal stability of a protein: the water-entropy gain at 25 °C upon folding normalized by the number of residues, which is calculated using a hybrid of the angle-dependent integral equation theory combined with the multipolar water model and the morphometric approach. A protein with a larger value of the measure is thermally more stable. Here we extend the study to analyses on the effects of heme on the thermal stability of four cytochromes c (PA c(551), PH c(552), HT c(552), and AA c(555)) whose denaturation temperatures are considerably different from one another despite that they share significantly high sequence homology and similar three-dimensional folds. The major conclusions are as follows. For all the four cytochromes c, the thermal stability is largely enhanced by the heme binding in terms of the water entropy. For the holo states, the measure is the largest for AA c(555). However, AA c(555) has the lowest packing efficiency of heme and the apo polypeptide with hololike structure, which is unfavorable for the water entropy. The highest stability of AA c(555) is ascribed primarily to the highest efficiency of side-chain packing of the apo polypeptide itself. We argue for all the four cytochromes c that due to covalent heme linkages, the number of accessible conformations of the denatured state is decreased by the steric hindrance of heme, and the conformational-entropy loss upon folding becomes smaller, leading to an enhancement of the thermal stability. As for the apo state modeled as the native structure whose heme is removed, AA c(555) has a much larger value of the measure than the other three. Overall, the theoretical results are quite consistent with the experimental observations (e.g., at 25 °C the α-helix content of the apo state of AA c(555) is almost equal to that of the holo state while almost all helices are collapsed in the apo states of PA c(551), PH c(552), and HT c(552)).


Assuntos
Citocromos c/química , Heme/química , Temperatura , Apolipoproteínas/química , Entropia , Modelos Moleculares , Conformação Proteica , Água/química
13.
Biophys Physicobiol ; 18: 96-107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026399

RESUMO

Cryo-electron microscopy (cryo-EM) is an important experimental technique for the structural analysis of biomolecules that are difficult or impossible to crystallize. The three-dimensional structure of a biomolecule can be reconstructed using two-dimensional electron-density maps, which are experimentally sampled via the electron beam irradiation of vitreous ice in which the target biomolecules are embedded. One assumption required for this reconstruction is that the orientation of the biomolecules in the vitreous ice is isotropic. However, this is not always the case and two-dimensional electron-density maps are often sampled using preferred biomolecular orientations, which can make reconstruction difficult or impossible. Compensation for under-represented views is computationally feasible for the reconstruction of three-dimensional electron density maps, but one must know whether or not there is any missing information in the sampled two-dimensional electron density maps. Thus, a measure to identify whether a cryo-EM data is obtained from the bio-molecules adopting preferred orientations is required. In the present study, we propose a measure for which the geometry of manifold projected onto a low-dimensional space is used. To show the usefulness of the measure, we perform simulations for cryo-EM experiment of a protein. It is found that the geometry of manifold projected onto a two-dimensional space for a protein adopting a preferred biomolecular orientation is significantly different from that for a protein adopting a uniform orientation. This result suggests that the geometry of manifold projected onto a low-dimensional space can be used for the measure for the identification that the biomolecules adopt preferred orientations.

14.
J Chem Phys ; 133(4): 045103, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20687691

RESUMO

We report a new progress in elucidating the mechanism of the unidirectional movement of a linear-motor protein (e.g., myosin) along a filament (e.g., F-actin). The basic concept emphasized here is that a potential field is entropically formed for the protein on the filament immersed in solvent due to the effect of the translational displacement of solvent molecules. The entropic potential field is strongly dependent on geometric features of the protein and the filament, their overall shapes as well as details of the polyatomic structures. The features and the corresponding field are judiciously adjusted by the binding of adenosine triphosphate (ATP) to the protein, hydrolysis of ATP into adenosine diphosphate (ADP)+Pi, and release of Pi and ADP. As the first step, we propose the following physical picture: The potential field formed along the filament for the protein without the binding of ATP or ADP+Pi to it is largely different from that for the protein with the binding, and the directed movement is realized by repeated switches from one of the fields to the other. To illustrate the picture, we analyze the spatial distribution of the entropic potential between a large solute and a large body using the three-dimensional integral equation theory. The solute is modeled as a large hard sphere. Two model filaments are considered as the body: model 1 is a set of one-dimensionally connected large hard spheres and model 2 is a double helical structure formed by two sets of connected large hard spheres. The solute and the filament are immersed in small hard spheres forming the solvent. The major findings are as follows. The solute is strongly confined within a narrow space in contact with the filament. Within the space there are locations with sharply deep local potential minima along the filament, and the distance between two adjacent locations is equal to the diameter of the large spheres constituting the filament. The potential minima form a ringlike domain in model 1 while they form a pointlike one in model 2. We then examine the effects of geometric features of the solute on the amplitudes and asymmetry of the entropic potential field acting on the solute along the filament. A large aspherical solute with a cleft near the solute-filament interface, which mimics the myosin motor domain, is considered in the examination. Thus, the two fields in our physical picture described above are qualitatively reproduced. The factors to be taken into account in further studies are also discussed.


Assuntos
Entropia , Potencial Evocado Motor/fisiologia , Proteínas dos Microfilamentos/química , Modelos Biológicos , Modelos Estatísticos , Proteínas Motores Moleculares/química , Actinas/química , Actinas/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Hidrólise , Proteínas dos Microfilamentos/metabolismo , Proteínas Motores Moleculares/metabolismo , Miosinas/química , Miosinas/metabolismo , Solventes/química
15.
J Chem Phys ; 132(6): 065105, 2010 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-20151761

RESUMO

We have recently shown that protein folding is driven by the water-entropy gain. When the alpha-helix or beta-sheet is formed, the excluded volumes generated by the backbone and side chains overlap, leading to an increase in the total volume available to the translational displacement of water molecules. Primarily by this effect, the water entropy becomes higher. At the same time, the dehydration penalty (i.e., the break of hydrogen bonds with water molecules) is compensated by the formation of intramolecular hydrogen bonds. Hence, these secondary structures are very advantageous units, which are to be formed as much as possible in protein folding. The packing of side chains, which leads to a large increase in the water entropy, is also crucially important. Here we investigate the roles of the side-chain packing in the second structural preference in protein folding. For some proteins we calculate the hydration entropies of a number of structures including the native structure with or without side chains. A hybrid of the angle-dependent integral equation theory combined with the multipolar water model and the morphometric approach is employed in the calculation. Our major findings are as follows. For the structures without side chains, there is an apparent tendency that the water entropy becomes higher as the alpha-helix or beta-sheet content increases. For the structures with side chains, however, a higher content of alpha-helices or beta-sheets does not necessarily lead to larger entropy of water due to the effect of the side-chain packing. The thorough, overall packing of side chains, which gives little space in the interior, is unique to the native structure. To accomplish such specific packing, the alpha-helix and beta-sheet contents are prudently adjusted in protein folding.


Assuntos
Proteínas/química , Bacillus subtilis/química , Proteínas de Bactérias/química , Entropia , Ferritinas/química , Humanos , Modelos Moleculares , Dobramento de Proteína , Estrutura Secundária de Proteína , Água/química
16.
Proteins ; 77(4): 950-61, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19688821

RESUMO

We have developed a free-energy function based on an all-atom model for proteins. It comprises two components, the hydration entropy (HE) and the total dehydration penalty (TDP). Upon a transition to a more compact structure, the number of accessible configurations arising from the translational displacement of water molecules in the system increases, leading to a water-entropy gain. To fully account for this effect, the HE is calculated using a statistical-mechanical theory applied to a molecular model for water. The TDP corresponds to the sum of the hydration energy and the protein intramolecular energy when a fully extended structure, which possesses the maximum number of hydrogen bonds with water molecules and no intramolecular hydrogen bonds, is chosen as the standard one. When a donor and an acceptor (e.g., N and O, respectively) are buried in the interior after the break of hydrogen bonds with water molecules, if they form an intramolecular hydrogen bond, no penalty is imposed. When a donor or an acceptor is buried with no intramolecular hydrogen bond formed, an energetic penalty is imposed. We examine all the donors and acceptors for backbone-backbone, backbone-side chain, and side chain-side chain intramolecular hydrogen bonds and calculate the TDP. Our free-energy function has been tested for three different decoy sets. It is better than any other physics-based or knowledge-based potential function in terms of the accuracy in discriminating the native fold from misfolded decoys and the achievement of high Z-scores.


Assuntos
Modelos Moleculares , Proteínas/química , Simulação por Computador , Entropia , Ligação de Hidrogênio , Íons/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Eletricidade Estática , Termodinâmica , Água/química
17.
J Chem Phys ; 130(14): 144705, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19368463

RESUMO

The hydrophobic and hydrophilic hydrations are analyzed with the emphasis on the sign of the heat capacity of hydration (HCH). The angle-dependent integral equation theory combined with a multipolar water model is employed in the analysis. The hydration entropy (HE) is decomposed into the translational and orientational parts. It is found that the orientational part governs the temperature dependence of the HE. The orientational part is further decomposed into the solute-water pair correlation component (component 1) and the water reorganization component (component 2). For hydrophilic solutes, components 1 and 2 are negative and positive, respectively. As the temperature becomes higher, component 1 increases while component 2 decreases: They make positive and negative contributions to the HCH, respectively. The strong solute-water electrostatic attractive interactions induce the distortion of water structure near the solute and the break of hydrogen bonds. As the temperature increases, the effect of the attractive interactions becomes smaller and the distortion of water structure is reduced (i.e., more hydrogen bonds are recovered with increasing temperature). The latter effect dominates, leading to negative HCH. During the heat addition the formation of hydrogen bonds, which accompanies heat generation, occurs near the solute. Consequently, the addition of the same amount of heat leads to a larger increase in the thermal energy (or equivalently, in the temperature) than in the case of pure water. The hydrophobic hydration, which is opposite to the hydrophilic hydration in many respects, is also discussed in detail.


Assuntos
Termodinâmica , Água/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Soluções/química
18.
J Chem Phys ; 131(20): 205102, 2009 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19947708

RESUMO

Yeast frataxin is a protein exhibiting cold denaturation at an exceptionally high temperature (280 K). We show that the microscopic mechanism of cold denaturation, which has recently been suggested by us [Yoshidome and Kinoshita, Phys. Rev. E 79, 030905(R) (2009)], is also applicable to yeast frataxin. The hybrid of the angle-dependent integral equation theory combined with the multipolar water model and the morphometric approach is employed for calculating hydration thermodynamic quantities of the protein with a prescribed structure. In order to investigate the characteristics of the cold-denatured structures of yeast frataxin, we consider the entropy change upon denaturation comprising the loss of the water entropy and the gain in the protein conformational entropy. The minimum and maximum values of the conformational-entropy gain (i.e., the range within which the exact value lies) are estimated via two routes. The range of the water-entropy loss is then determined from the entropy change experimentally obtained [Pastore et al., J. Am. Chem. Soc. 129, 5374 (2007)]. We calculate the water-entropy loss upon the transition from the native structure to a variety of unfolded structures. We then select the unfolded structures for which the water-entropy loss falls within the determined range. The selection is performed at cold and heat denaturation temperatures of yeast frataxin. The structures characterizing cold and heat denaturations are thus obtained. It is found that the average values of the radius of gyration, excluded volume, and water-accessible surface area for the cold-denatured structures are almost the same as those for the heat-denatured ones. We theoretically estimate the cold denaturation temperature of yeast frataxin from the experimental data for the enthalpy, entropy, and heat-capacity changes upon denaturation. The finding is that the temperature is considerably higher than 273 K. These results are in qualitatively good accord with the experimental observations.


Assuntos
Proteínas de Bactérias/química , Temperatura Baixa , Entropia , Escherichia coli/química , Conformação Proteica/efeitos da radiação , Desnaturação Proteica/fisiologia , Água/química , Varredura Diferencial de Calorimetria , Estabilidade de Medicamentos , Proteínas de Choque Térmico/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Engenharia de Proteínas , Dobramento de Proteína , Propriedades de Superfície , Termodinâmica
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(3 Pt 1): 030905, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19391894

RESUMO

We elucidate the microscopic mechanism of the weakening of the hydrophobicity at low temperatures by investigating cold denaturation of a protein. We employ an elaborate statistical-mechanical theory combined with a realistic water model. At low temperatures, the ordered structure with enhanced hydrogen bonds of water molecules is formed near nonpolar groups, leading to entropic loss and energy gain which are both quite large. However, they are canceled out and make no contribution to the free-energy change. We argue that a different factor, which is responsible for the weakening of the hydrophobicity at low temperatures, induces cold denaturation.


Assuntos
Temperatura Baixa , Desnaturação Proteica , Proteínas/química , Proteínas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Termodinâmica , Água/química
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(1 Pt 1): 011912, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19257074

RESUMO

We propose a general framework of pressure effects on the structures formed by the self-assembly of solute molecules immersed in solvent. The integral equation theory combined with the morphometric approach is employed for a hard-body model system. Our picture is that protein folding and ordered association of proteins are driven by the solvent entropy: At low pressures, the structures almost minimizing the excluded volume (EV) generated for solvent particles are stabilized. Such structures appear to be even more stabilized at high pressures. However, it is experimentally known that the native structure of a protein is unfolded, and ordered aggregates such as amyloid fibrils and actin filaments are dissociated by applying high pressures. This initially puzzling result can also be elucidated in terms of the solvent entropy. A clue to the basic mechanism is in the phenomenon that, when a large hard-sphere solute is immersed in small hard spheres forming the solvent, the small hard spheres are enriched near the solute and this enrichment becomes greater as the pressure increases. We argue that "attraction" is entropically provided between the solute surface and solvent particles, and the attraction becomes higher with rising pressure. Due to this effect, at high pressures, the structures possessing the largest possible solvent-accessible surface area together with sufficiently small EV become more stable in terms of the solvent entropy. To illustrate this concept, we perform an analysis of pressure denaturation of three different proteins. It is shown that only the structures that have the characteristics described above exhibit interesting behavior. They first become more destabilized relative to the native structure as the pressure increases, but beyond a threshold pressure the relative instability begins to decrease and they eventually become more stable than the native structure.


Assuntos
Entropia , Pressão , Proteínas/química , Amiloide/química , Modelos Moleculares , Desnaturação Proteica/efeitos dos fármacos , Estabilidade Proteica , Solventes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA