RESUMO
To preserve germination ability, plant seeds must be protected from environmental stresses during the storage period. Here, we demonstrate that autophagy, an intracellular degradation system, maintains seed germination ability in Arabidopsis thaliana. The germination ability of long-term (>5 years) stored dry seeds of autophagy-defective (atg) mutant and wild-type (WT) plants was compared. Long-term stored (old) seeds of atg mutants showed lower germination ability than WT seeds, although short-term stored (new) seeds of atg mutants did not show such a phenotype. After removal of the seed coat and endosperm from old atg mutant seeds, the embryos developed into seedlings. Autophagic flux was maintained in endosperm cells during the storage period, and autophagy defect resulted in the accumulation of oxidized proteins and accelerated endosperm cell death. Consistent with these findings, the transcripts of genes, ENDO-ß-MANNANASE 7 and EXPANSIN 2, which are responsible for degradation/remodeling of the endosperm cell wall during germination, were reduced in old atg mutant seeds. We conclude that autophagy maintains endosperm quality during seed storage by suppressing aging-dependent oxidative damage and cell death, which allows the endosperm to perform optimal functions during germination, i.e., cell wall degradation/remodeling, even after long-term storage.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Endosperma/genética , Germinação/fisiologia , Sementes/genética , Proteínas de Arabidopsis/metabolismo , Autofagia , Regulação da Expressão Gênica de PlantasRESUMO
Autophagy is an evolutionarily conserved eukaryotic intracellular degradation process. Although the molecular mechanisms of plant autophagy share similarities with those in yeast and mammals, certain unique mechanisms have been identified. Recent studies have highlighted the importance of autophagy during vegetative growth stages as well as in plant-specific developmental processes, such as seed development, germination, flowering, and somatic reprogramming. Autophagy enables plants to adapt to and manage severe environmental conditions, such as nutrient starvation, high-intensity light stress, and heat stress, leading to intracellular remodeling and physiological changes in response to stress. In the past, plant autophagy research lagged behind similar studies in yeast and mammals; however, recent advances have greatly expanded our understanding of plant-specific autophagy mechanisms and functions. This review summarizes current knowledge and latest research findings on the mechanisms and roles of plant autophagy with the objective of improving our understanding of this vital process in plants.
Assuntos
Autofagia , Saccharomyces cerevisiae , Animais , Autofagia/fisiologia , Plantas/genética , Plantas/metabolismo , MamíferosRESUMO
Inorganic phosphate (Pi) is essential for plant growth. However, Pi is often limiting in soil. Hence, plants have established several mechanisms of response to Pi starvation. One of the important mechanisms is Pi recycling, which includes membrane lipid remodeling and plastid DNA degradation via catabolic enzymes. However, the involvement of other degradation systems in Pi recycling remains unclear. Autophagy, a system for degradation of intracellular components, contributes to recycling of some nutrients, such as nitrogen, carbon, and zinc, under starvation. In the present study, we found that autophagy-deficient mutants depleted Pi early and exhibited severe leaf growth defects under Pi starvation. The main cargo of autophagy induced by early Pi depleted conditions was the endoplasmic reticulum (ER), indicating that ER-phagy, a type of autophagy that selectively degrades the ER, is involved in the response to the early phase of Pi starvation for contribution to Pi recycling. This ER-phagy was suppressed in an INOSITOL-REQUIRING ENZYME 1 double mutant, ire1a ire1b, in which ER stress responses are defective, suggesting that the early Pi starvation induced ER-phagy is induced by ER stress. Furthermore, iron limitation and inhibition of lipid-reactive oxygen species accumulation suppressed the ER-phagy. Interestingly, membrane lipid remodeling, a response to late Pi starvation, was accelerated in the ire1a ire1b under early Pi-depleted conditions. Our findings reveal the existence of two different phases of responses to Pi starvation (i.e. early and late) and indicate that ER stress-mediated ER-phagy is involved in Pi recycling in the early phase to suppress acceleration of the late phase.
Assuntos
Estresse do Retículo Endoplasmático , Ferro , Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Ferro/metabolismo , Lipídeos de Membrana/metabolismoRESUMO
Seed dormancy is an adaptive trait that enables plants to survive adverse conditions and restart growth in a season and location suitable for vegetative and reproductive growth. Control of seed dormancy is also important for crop production and food quality because it can help induce uniform germination and prevent preharvest sprouting. Rice preharvest sprouting quantitative trait locus analysis has identified Seed dormancy 4 (Sdr4) as a positive regulator of dormancy development. Here, we analyzed the loss-of-function mutant of the Arabidopsis ortholog, Sdr4 Like1 (SFL1), and found that the sfl1-1 seeds showed precocious germination at the mid- to late-maturation stage similar to rice sdr4 mutant, but converted to become more dormant than the wild type during maturation drying. Coordinated with the dormancy levels, expression levels of the seed maturation and dormancy master regulator genes, ABI3, FUS3, and DOG1 in sfl1-1 seeds were lower than in wild type at early- and mid-maturation stages, but higher at the late-maturation stage. In addition to the seed dormancy phenotype, sfl1-1 seedlings showed a growth arrest phenotype and heterochronic expression of LAFL (LEC1, ABI3, FUS3, LEC2) and DOG1 in the seedlings. These data suggest that SFL1 is a positive regulator of initiation and termination of the seed dormancy program. We also found genetic interaction between SFL1 and the SFL2, SFL3, and SFL4 paralogs of SFL1, which impacts on the timing of the phase transition from embryo maturation to seedling growth.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/metabolismo , Dormência de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Sementes/metabolismo , Plântula/genética , Oryza/genética , Oryza/metabolismoRESUMO
Plant responses to NH4+ stress are complex, and multiple mechanisms underlying NH4+ sensitivity and tolerance in plants may be involved. Here, we demonstrate that macro- and microautophagic activities are oppositely affected in plants grown under NH4+ toxicity conditions. When grown under NH4+ stress conditions, macroautophagic activity was impaired in roots. Root cells accumulated autophagosomes in the cytoplasm, but showed less autophagic flux, indicating that late steps of the macroautophagy process are affected under NH4+ stress conditions. Under this scenario, we also found that the CCZ1-MON1 complex, a critical factor for vacuole delivery pathways, functions in the late step of the macroautophagic pathway in Arabidopsis. In contrast, an accumulation of tonoplast-derived vesicles was observed in vacuolar lumens of root cells of NH4+ -stressed plants, suggesting the induction of a microautophagy-like process. In this sense, some SYP22-, but mainly VAMP711-positive vesicles were observed inside vacuole in roots of NH4+ -stressed plants. Consistent with the increased tonoplast degradation and the reduced membrane flow to the vacuole due to the impaired macroautophagic flux, the vacuoles of root cells of NH4+ -stressed plants showed a simplified structure and lower tonoplast content. Taken together, this study presents evidence that postulates late steps of the macroautophagic process as a relevant physiological mechanism underlying the NH4+ sensitivity response in Arabidopsis, and additionally provides insights into the molecular tools for studying microautophagy in plants.
Assuntos
Compostos de Amônio/metabolismo , Arabidopsis/metabolismo , Microautofagia , Raízes de Plantas/metabolismo , Arabidopsis/fisiologia , Autofagossomos/metabolismo , Autofagossomos/fisiologia , Raízes de Plantas/fisiologia , Estresse FisiológicoRESUMO
Inorganic phosphate (Pi) and nitrogen (N) are essential nutrients for plant growth. We found that a five-fold oversupply of nitrate rescues Arabidopsis (Arabidopsis thaliana) plants from Pi-starvation stress. Analyses of transgenic plants that overexpressed GFP-AUTOPHAGY8 showed that an oversupply of nitrate induced autophagy flux under Pi-depleted conditions. Expression of DIN6 and DIN10, the carbon (C) starvation-responsive genes, was upregulated when nitrate was oversupplied under Pi starvation, which suggested that the plants recognized the oversupply of nitrate as C starvation stress because of the reduction in the C/N ratio. Indeed, formation of Rubisco-containing bodies (RCBs), which contain chloroplast stroma and are induced by C starvation, was enhanced when nitrate was oversupplied under Pi starvation. Moreover, autophagy-deficient mutants did not release Pi (unlike wild-type plants), exhibited no RCB accumulation inside vacuoles, and were hypersensitive to Pi starvation, indicating that RCB-mediated chlorophagy is involved in Pi starvation tolerance. Thus, our results showed that the Arabidopsis response to Pi starvation is closely linked with N and C availability and that autophagy is a key factor that controls plant growth under Pi starvation.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Carbono/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Fosfatos/deficiência , Ribulose-Bifosfato Carboxilase/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Autofagia , Carbono/deficiência , Cloroplastos/fisiologia , Microautofagia , Mutação , Plantas Geneticamente Modificadas , Ribulose-Bifosfato Carboxilase/genética , Estresse Fisiológico , Vacúolos/metabolismoRESUMO
Zinc (Zn) is nutritionally an essential metal element, but excess Zn in the environment is toxic to plants. Autophagy is a major pathway responsible for intracellular degradation. Here, we demonstrate the important role of autophagy in adaptation to excess Zn stress. We found that autophagy-defective Arabidopsis thaliana (atg2 and atg5) exhibited marked excess Zn-induced chlorosis and growth defects relative to wild-type (WT). Imaging and biochemical analyses revealed that autophagic activity was elevated under excess Zn. Interestingly, the excess Zn symptoms of atg5 were alleviated by supplementation of high levels of iron (Fe) to the media. Under excess Zn, in atg5, Fe starvation was especially severe in juvenile true leaves. Consistent with this, accumulation levels of Fe3+ near the shoot apical meristem remarkably reduced in atg5. Furthermore, excision of cotyledons induced severe excess Zn symptoms in WT, similar to those observed in atg5.Our data suggest that Fe3+ supplied from source leaves (cotyledons) via autophagy is distributed to sink leaves (true leaves) to promote healthy growth under excess Zn, revealing a new dimension, the importance of heavy-metal stress responses by the intracellular recycling.
Assuntos
Arabidopsis/metabolismo , Autofagia , Ferro/metabolismo , Zinco/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Deficiências de Ferro , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse FisiológicoRESUMO
Zinc (Zn) is an essential micronutrient for plant growth. Accordingly, Zn deficiency (-Zn) in agricultural fields is a serious problem, especially in developing regions. Autophagy, a major intracellular degradation system in eukaryotes, plays important roles in nutrient recycling under nitrogen and carbon starvation. However, the relationship between autophagy and deficiencies of other essential elements remains poorly understood, especially in plants. In this study, we focused on Zn due to the property that within cells most Zn is tightly bound to proteins, which can be targets of autophagy. We found that autophagy plays a critical role during -Zn in Arabidopsis (Arabidopsis thaliana). Autophagy-defective plants (atg mutants) failed to grow and developed accelerated chlorosis under -Zn. As expected, -Zn induced autophagy in wild-type plants, whereas in atg mutants, various organelle proteins accumulated to high levels. Additionally, the amount of free Zn2+ was lower in atg mutants than in control plants. Interestingly, -Zn symptoms in atg mutants recovered under low-light, iron-limited conditions. The levels of hydroxyl radicals in chloroplasts were elevated, and the levels of superoxide were reduced in -Zn atg mutants. These results imply that the photosynthesis-mediated Fenton-like reaction, which is responsible for the chlorotic symptom of -Zn, is accelerated in atg mutants. Together, our data indicate that autophagic degradation plays important functions in maintaining Zn pools to increase Zn bioavailability and maintain reactive oxygen species homeostasis under -Zn in plants.
Assuntos
Arabidopsis/metabolismo , Autofagia/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Zinco/deficiência , Zinco/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Autophagy is an evolutionarily conserved intracellular vacuolar process. Since Christian de Duve first coined the term 'autophagy' in 1963, it had not been well understood at the molecular level until much later, due to limitations in biochemical approaches and/or morphological approaches posed by electron microscopy. An important milestone was achieved with the isolation and identification of autophagy-related (ATG) genes by genetic screening using yeast Saccharomyces cerevisiae. ATG genes are well conserved in most eukaryotic organisms, which allowed the subsequent isolation of ATG gene-knockouts in plants. From the phenotypic analyses of the autophagy-defective plants, the physiological roles of autophagy have been predicted. However, in some cases, all the phenotypes cannot be simply explained by defects in autophagy. Therefore, in order to fully understand the physiological implications of plant autophagy, it is quite important to elucidate the molecular mechanisms involved in each process in macro-/micro-autophagy. Although, until recently, our understanding of the molecular mechanisms of plant autophagy was lagging compared to similar research in yeast and animals, current studies have made many great advances in the plant research field. In this review, we discuss current knowledge of the molecular mechanisms of plant autophagy, from autophagy-induction/autophagosome-formation to vacuolar degradation, comparing these to processes in yeast and mammals. We also review aspects of plant autophagy research that require further investigation in the future.
Assuntos
Autofagossomos/fisiologia , Autofagia/fisiologia , Células Vegetais/fisiologia , Vacúolos/metabolismo , Proteínas de Plantas/metabolismoRESUMO
Autophagy is essential for nutrient recycling and plays a fundamental role in seed production and grain filling in plants. Autophagy participates in nitrogen remobilization at the whole-plant level, and the seeds of autophagy mutants present abnormal C and N contents relative to wild-type (WT) plants. It is well known that autophagy (ATG) genes are induced in leaves during senescence; however, expression of such genes in seeds has not yet been reported. In this study we show that most of the ATG genes are induced during seed maturation in Arabidopsis siliques. Promoter-ATG8f::UIDA and promoter-ATG8f::GFP fusions showed the strong expression of ATG8f in the phloem companion cells of pericarps and the funiculus, and in the embryo. Expression was especially strong at the late stages of development. The presence of many GFP-ATG8 pre-autophagosomal structures and autophagosomes confirmed the presence of autophagic activity in WT seed embryos. Seeds of atg5 and WT plants grown under low- or high-nitrate conditions were analysed. Nitrate-independent phenotypes were found with higher seed abortion in atg5 and early browing, higher total protein concentrations in the viable seeds of this mutant as compared to the WT. The higher total protein accumulation in atg5 viable seeds was significant from early developmental stages onwards. In addition, relatively low and early accumulation of 12S globulins were found in atg5 seeds. These features led us to the conclusion that atg5 seed development is accelerated and that the protein storage deposition pathway is somehow abnormal or incomplete.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Autofagia/fisiologia , Regulação da Expressão Gênica de Plantas , Sementes/metabolismoRESUMO
Autophagy is a fundamental process in the plant life story, playing a key role in immunity, senescence, nutrient recycling, and adaptation to the environment. Transcriptomics and metabolomics of the rosette leaves of Arabidopsis thaliana autophagy mutants (atg) show that autophagy is essential for cell homeostasis and stress responses and that several metabolic pathways are affected. Depletion of hexoses, quercetins, and anthocyanins parallel the overaccumulation of several amino acids and related compounds, such as glutamate, methionine, glutathione, pipecolate, and 2-aminoadipate. Transcriptomic data show that the pathways for glutathione, methionine, raffinose, galacturonate, and anthocyanin are perturbed. Anthocyanin depletion in atg mutants, which was previously reported as a possible defect in flavonoid trafficking to the vacuole, appears due to the downregulation of the master genes encoding the enzymes and regulatory proteins involved in flavonoid biosynthesis. Overexpression of the PRODUCTION OF ANTHOCYANIN PIGMENT1 transcription factor restores anthocyanin accumulation in vacuoles of atg mutants. Transcriptome analyses reveal connections between autophagy and (1) salicylic acid biosynthesis and response, (2) cytokinin perception, (3) oxidative stress and plant defense, and possible interactions between autophagy and the COP9 signalosome machinery. The metabolic and transcriptomic signatures identified for the autophagy mutants are discussed and show consistencies with the observed phenotypes.
RESUMO
Peroxisomes are essential organelles that are characterized by the possession of enzymes that produce hydrogen peroxide (H2O2) as part of their normal catalytic cycle. During the metabolic process, peroxisomal proteins are inevitably damaged by H2O2 and the integrity of the peroxisomes is impaired. Here, we show that autophagy, an intracellular process for vacuolar degradation, selectively degrades dysfunctional peroxisomes. Marked accumulation of peroxisomes was observed in the leaves but not roots of autophagy-related (ATG)-knockout Arabidopsis thaliana mutants. The peroxisomes in leaf cells contained markedly increased levels of catalase in an insoluble and inactive aggregate form. The chemically inducible complementation system in ATG5-knockout Arabidopsis provided the evidence that these accumulated peroxisomes were delivered to vacuoles for degradation by autophagy. Interestingly, autophagosomal membrane structures specifically recognized the abnormal peroxisomes at the site of the aggregates. Thus, autophagy is essential for the quality control of peroxisomes in leaves and for proper plant development under natural growth conditions.
Assuntos
Autofagia , Peroxissomos/metabolismo , Folhas de Planta/citologia , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteína 5 Relacionada à Autofagia , Técnicas de Inativação de Genes , Especificidade de Órgãos , Peroxissomos/ultraestrutura , Monoéster Fosfórico Hidrolases/genética , Folhas de Planta/genética , Estresse FisiológicoRESUMO
The positioning of peroxisomes in a cell is a regulated process that is closely associated with their functions. Using this feature of the peroxisomal positioning as a criterion, we identified three Arabidopsis thaliana mutants (peroxisome unusual positioning1 [peup1], peup2, and peup4) that contain aggregated peroxisomes. We found that the PEUP1, PEUP2, and PEUP4 were identical to Autophagy-related2 (ATG2), ATG18a, and ATG7, respectively, which are involved in the autophagic system. The number of peroxisomes was increased and the peroxisomal proteins were highly accumulated in the peup1 mutant, suggesting that peroxisome degradation by autophagy (pexophagy) is deficient in the peup1 mutant. These aggregated peroxisomes contained high levels of inactive catalase and were more oxidative than those of the wild type, indicating that peroxisome aggregates comprise damaged peroxisomes. In addition, peroxisome aggregation was induced in wild-type plants by exogenous application of hydrogen peroxide. The cat2 mutant also contained peroxisome aggregates. These findings demonstrate that hydrogen peroxide as a result of catalase inactivation is the inducer of peroxisome aggregation. Furthermore, an autophagosome marker, ATG8, frequently colocalized with peroxisome aggregates, indicating that peroxisomes damaged by hydrogen peroxide are selectively degraded by autophagy in the wild type. Our data provide evidence that autophagy is crucial for quality control mechanisms for peroxisomes in Arabidopsis.
Assuntos
Arabidopsis/citologia , Autofagia , Peroxissomos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Peróxido de Hidrogênio/metabolismo , Mutação , Oxirredução , Fagossomos/metabolismo , Fagossomos/fisiologia , Estresse FisiológicoRESUMO
Autophagy is a degradation pathway that recycles cell materials upon encountering stress conditions or during specific developmental processes. To better understand the physiological roles of autophagy, proper monitoring methods are very important. In mammals and yeast, monitoring of autophagy is often performed with a green fluorescent protein (GFP)-ATG8 fusion protein or with acidotropic dyes such as monodansylcadaverine (MDC) and LysoTracker Red (LTR). To evaluate these monitoring methods, here we examined these systems by inducing autophagy in Arabidopsis thaliana roots as a model for monitoring autophagy in planta. Under carbon- and nitrogen-starved conditions, the number and size of vesicles labeled by GFP-ATG8 was increased for several hours and then gradually decreased to a level higher than that observed before the start of the experiment. We also observed the disappearance of GFP-ATG8-labeled vesicles after treatment with wortmannin, a phosphatidylinositol 3-kinase inhibitor known as an autophagy inhibitor, showing that the GFP-ATG8 transgenic line constitutes an excellent method for monitoring autophagy. These data were compared with plants stained with MDC and LTR. There was no appreciable MDC/LTR staining of small organelles in the root under the induction of autophagy. Some vesicles were eventually observed in the root tip only, but co-localization experiments, as well as experiments with autophagy-deficient atg mutants, provided the evidence that these structures were located in the vacuole and were not manifestly autophagosomes and/or autolysosomes. Extreme caution should therefore be used when monitoring autophagy with the aid of MDC/LTR. Additionally, our observations strongly suggest that autophagosomes fuse directly to vacuoles in Arabidopsis roots.
Assuntos
Arabidopsis/citologia , Autofagia , Técnicas Citológicas/métodos , Fusão de Membrana , Fagossomos/metabolismo , Raízes de Plantas/citologia , Vacúolos/metabolismo , Aminas/metabolismo , Androstadienos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Autofagia/efeitos dos fármacos , Cadaverina/análogos & derivados , Cadaverina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Cinética , Leucina/análogos & derivados , Leucina/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Fusão de Membrana/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/metabolismo , Coloração e Rotulagem , Nicotiana/citologia , Vacúolos/efeitos dos fármacos , WortmaninaRESUMO
Large numbers of publications have appeared over the last few years, dealing with the molecular details of the regulation and process of the autophagy machinery in animals, plants, and unicellular eukaryotic organisms. This strong interest is caused by the fact that the autophagic process is involved in the adaptation of organisms to their environment and to stressful conditions, thereby contributing to cell and organism survival and longevity. In plants, as in other eukaryotes, autophagy is associated with longevity as mutants display early and strong leaf senescence symptoms, however, the exact role of autophagy as a pro-survival or pro-death process is unclear. Recently, evidence that autophagy participates in nitrogen remobilization has been provided, but the duality of the role of autophagy in leaf longevity and/or nutrient recycling through cell component catabolism remains. This review aims to give an overview of leaf senescence-associated processes from the physiological point of view and to discuss relationships between nutrient recycling, proteolysis, and autophagy. The dual role of autophagy as a pro-survival or pro-death process is discussed.
Assuntos
Autofagia , Nitrogênio/metabolismo , Plantas/metabolismo , Cloroplastos/metabolismo , Flores/crescimento & desenvolvimento , Folhas de Planta/metabolismoRESUMO
Autophagy is present at a basal level in all plant tissues and is induced during leaf ageing and in response to nitrogen (N) starvation. Nitrogen remobilization from the rosette to the seeds is impaired in autophagy mutants. This report focuses on the role of autophagy in leaf N management and proteolysis during plant ageing. Metabolites, enzyme activities and protein contents were monitored in several autophagy-defective (atg) Arabidopsis mutants grown under low and high nitrate conditions. Results showed that carbon (C) and N statuses were affected in atg mutants before any senescence symptoms appeared. atg mutants accumulated larger amounts of ammonium, amino acids and proteins than wild type, and were depleted in sugars. Over-accumulation of proteins in atg mutants was selective and occurred despite higher endopeptidase and carboxypeptidase activities. Specific over-accumulation of the ribosomal proteins S6 and L13 subunits, and of catalase and glutamate dehydrogenase proteins was observed. atg mutants also accumulated peptides putatively identified as degradation products of the Rubisco large subunit and glutamine synthetase 2 (GS2). Incomplete chloroplast protein degradation resulting from autophagy defects could explain the higher N concentrations measured in atg rosettes and defects in N remobilization. It is concluded that autophagy controls C : N status and protein content in leaves of Arabidopsis.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/fisiologia , Autofagia , Nitratos/farmacologia , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Autofagia/efeitos dos fármacos , Biomassa , Western Blotting , Metabolismo dos Carboidratos/efeitos dos fármacos , Carbono/metabolismo , Glutamato-Amônia Ligase/metabolismo , Mutação/genética , Peptídeo Hidrolases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Proteólise/efeitos dos fármacos , Interferência de RNA/efeitos dos fármacosRESUMO
Autophagy is an evolutionarily conserved intracellular process for the vacuolar degradation of cytoplasmic components. There is no doubt that autophagy is very important to plant life, especially because plants are immobile and must survive in environmental extremes. Early studies of autophagy provided our first insights into the structural characteristics of the process in plants, but for a long time the molecular mechanisms and the physiological roles of autophagy were not understood. Genetic analyses of autophagy in the yeast Saccharomyces cerevisiae have greatly expanded our knowledge of the molecular aspects of autophagy in plants as well as in animals. Until recently our knowledge of plant autophagy was in its infancy compared with autophagy research in yeast and animals, but recent efforts by plant researchers have made many advances in our understanding of plant autophagy. Here I will introduce an overview of autophagy in plants, present current findings and discuss the physiological roles of self-degradation.
Assuntos
Autofagia/fisiologia , Células Vegetais/fisiologia , Proteínas de Plantas/metabolismo , Organelas/metabolismo , Proteínas de Plantas/genética , Plantas/genética , Plantas/metabolismoRESUMO
Seedling roots display not only gravitropism but also hydrotropism, and the two tropisms interfere with one another. In Arabidopsis (Arabidopsis thaliana) roots, amyloplasts in columella cells are rapidly degraded during the hydrotropic response. Degradation of amyloplasts involved in gravisensing enhances the hydrotropic response by reducing the gravitropic response. However, the mechanism by which amyloplasts are degraded in hydrotropically responding roots remains unknown. In this study, the mechanistic aspects of the degradation of amyloplasts in columella cells during hydrotropic response were investigated by analyzing organellar morphology, cell polarity and changes in gene expression. The results showed that hydrotropic stimulation or systemic water stress caused dramatic changes in organellar form and positioning in columella cells. Specifically, the columella cells of hydrotropically responding or water-stressed roots lost polarity in the distribution of the endoplasmic reticulum (ER), and showed accelerated vacuolization and nuclear movement. Analysis of ER-localized GFP showed that ER redistributed around the developed vacuoles. Cells often showed decomposing amyloplasts in autophagosome-like structures. Both hydrotropic stimulation and water stress upregulated the expression of AtATG18a, which is required for autophagosome formation. Furthermore, analysis with GFP-AtATG8a revealed that both hydrotropic stimulation and water stress induced the formation of autophagosomes in the columella cells. In addition, expression of plastid marker, pt-GFP, in the columella cells dramatically decreased in response to both hydrotropic stimulation and water stress, but its decrease was much less in the autophagy mutant atg5. These results suggest that hydrotropic stimulation confers water stress in the roots, which triggers an autophagic response responsible for the degradation of amyloplasts in columella cells of Arabidopsis roots.
Assuntos
Arabidopsis/fisiologia , Autofagia/fisiologia , Plastídeos/fisiologia , Plântula/fisiologia , Estresse Fisiológico/fisiologia , Tropismo/fisiologia , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas Relacionadas à Autofagia , Núcleo Celular/fisiologia , Núcleo Celular/ultraestrutura , Polaridade Celular , Desidratação , Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/ultraestrutura , Regulação da Expressão Gênica de Plantas , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mutação , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Plastídeos/genética , Plastídeos/ultraestrutura , Proteínas Recombinantes de Fusão , Plântula/genética , Plântula/ultraestrutura , Fatores de Tempo , Fatores de Transcrição/genética , Vacúolos/fisiologia , Vacúolos/ultraestruturaRESUMO
⢠Processes allowing the recycling of organic nitrogen and export to young leaves and seeds are important determinants of plant yield, especially when plants are nitrate-limited. Because autophagy is induced during leaf ageing and in response to nitrogen starvation, its role in nitrogen remobilization was suspected. It was recently shown that autophagy participates in the trafficking of Rubisco-containing bodies to the vacuole. ⢠To investigate the role of autophagy in nitrogen remobilization, several autophagy-defective (atg) Arabidopsis mutants were grown under low and high nitrate supplies and labeled with at the vegetative stage in order to determine (15) N partitioning in seeds at harvest. Because atg mutants displayed earlier and more rapid leaf senescence than wild type, we investigated whether their defects in nitrogen remobilization were related to premature leaf cell death by studying the stay-green atg5.sid2 and atg5.NahG mutants. ⢠Results showed that nitrogen remobilization efficiency was significantly lower in all the atg mutants irrespective of biomass defects, harvest index reduction, leaf senescence phenotypes and nitrogen conditions. ⢠We conclude that autophagy core machinery is needed for nitrogen remobilization and seed filling.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Autofagia/fisiologia , Nitratos/metabolismo , Nitrogênio/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteína 5 Relacionada à Autofagia , Biomassa , Carbono/metabolismo , Senescência Celular , Mutação , Isótopos de Nitrogênio/análise , Fenótipo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Interferência de RNA , Ribulose-Bifosfato Carboxilase/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/fisiologia , Vacúolos/metabolismoRESUMO
Autophagy is an evolutionarily conserved intracellular process for vacuolar degradation of cytoplasmic components. In higher plants, autophagy defects result in early senescence and excessive immunity-related programmed cell death (PCD) irrespective of nutrient conditions; however, the mechanisms by which cells die in the absence of autophagy have been unclear. Here, we demonstrate a conserved requirement for salicylic acid (SA) signaling for these phenomena in autophagy-defective mutants (atg mutants). The atg mutant phenotypes of accelerated PCD in senescence and immunity are SA signaling dependent but do not require intact jasmonic acid or ethylene signaling pathways. Application of an SA agonist induces the senescence/cell death phenotype in SA-deficient atg mutants but not in atg npr1 plants, suggesting that the cell death phenotypes in the atg mutants are dependent on the SA signal transducer NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1. We also show that autophagy is induced by the SA agonist. These findings imply that plant autophagy operates a novel negative feedback loop modulating SA signaling to negatively regulate senescence and immunity-related PCD.