Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35420127

RESUMO

The etiology of cleft lip with or without cleft palate (CL/P), a common congenital birth defect, is complex, with genetic and epigenetic, as well as environmental, contributing factors. Recent studies suggest that fetal development is affected by maternal conditions through microRNAs (miRNAs), a group of short noncoding RNAs. Here, we show that miR-129-5p and miR-340-5p suppress cell proliferation in both primary mouse embryonic palatal mesenchymal cells and O9-1 cells, a neural crest cell line, through the regulation of Sox5 and Trp53 by miR-129-5p, and the regulation of Chd7, Fign and Tgfbr1 by miR-340-5p. Notably, miR-340-5p, but not miR-129-5p, was upregulated following all-trans retinoic acid (atRA; tretinoin) administration, and a miR-340-5p inhibitor rescued the cleft palate (CP) phenotype in 47% of atRA-induced CP mice. We have previously reported that a miR-124-3p inhibitor can also partially rescue the CP phenotype in atRA-induced CP mouse model. In this study, we found that a cocktail of miR-124-3p and miR-340-5p inhibitors rescued atRA-induced CP with almost complete penetrance. Taken together, our results suggest that normalization of pathological miRNA expression can be a preventive intervention for CP.


Assuntos
Fenda Labial , Fissura Palatina , MicroRNAs , Animais , Proliferação de Células/genética , Fenda Labial/induzido quimicamente , Fenda Labial/genética , Fenda Labial/patologia , Fissura Palatina/induzido quimicamente , Fissura Palatina/genética , Fissura Palatina/patologia , Camundongos , MicroRNAs/metabolismo , Tretinoína/farmacologia
2.
Biochem Biophys Res Commun ; 725: 150266, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38878759

RESUMO

Cisplatin (CDDP) is a platinum-based anticancer drug widely prescribed for its effectiveness in treating various forms of cancer. However, its major side effect is nephrotoxicity. Although several methods have been developed to mitigate CDDP-induced nephrotoxicity, an optimal approach has yet to be established. This study aimed to investigate the "chronotoxicity" of CDDP as a potential strategy to reduce its side effects. Male ICR mice were treated with CDDP (20 mg/kg, intraperitoneal injection, one shot) at zeitgeber time (ZT) 2 or ZT14 (light or dark phase). After 72 h, we collected plasma and kidney and evaluated several markers. We found that body weight change between ZT2 and ZT14 by CDDP was comparable. In contrast, many toxicological factors, such as plasma blood urine nitrogen, plasma creatinine, renal oxidative stress (malondialdehyde), DNA damage (γH2AX), acute kidney injury biomarker (KIM-1), and inflammation (Tnfα), were significantly induced at ZT14 compared to than that of ZT2. Our present data suggested that chronotoxicology might provide beneficial information on the importance of administration timings for toxic evaluations and unacceptable side effects.


Assuntos
Antineoplásicos , Ritmo Circadiano , Cisplatino , Rim , Camundongos Endogâmicos ICR , Animais , Cisplatino/toxicidade , Masculino , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Antineoplásicos/toxicidade , Antineoplásicos/efeitos adversos , Camundongos , Ritmo Circadiano/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/patologia
3.
Biochem Biophys Res Commun ; 696: 149516, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38241808

RESUMO

Cleft palate (CP) is one of the most common congenital diseases, and is accompanied by a complicated etiology. Medical exposure in women is among one of the reasons leading to CP. Recently, it has been reported that microRNA (miRNA) plays a crucial role in palate formation and the disruption of miRNA that influence the development of CP. Although association with pharmaceuticals and miRNAs were suggested, it has remained largely unknow. The aim of the current investigation is to elucidate upon the miRNA associated with the inhibition of phenobarbital (PB)-induced cell proliferation in human embryonic palatal mesenchymal (HEPM) cells. We showed that PB inhibited HEPM cell viability in a dose-dependent manner. We demonstrated that PB treatment suppressed cyclin-D1 expression in HEPM cells. Furthermore, PB upregulated let-7c-5p expression and downregulated the expression of two downstream genes (BACH1 and PAX3). Finally, we demonstrated that the let-7c-5p inhibitor alleviated PB-induced inhibition of cell proliferation and altered BACH1 and PAX3 expression levels. These results suggest that PB suppresses cell viability by modulating let-7c-5p expression.


Assuntos
Fissura Palatina , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células/genética
4.
Hum Mol Genet ; 30(19): 1881-1893, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34104955

RESUMO

The etiology of cleft lip with/without cleft palate (CL/P), one of the most frequent craniofacial birth defects worldwide, is complicated by contributions of both genetic and environmental factors. Understanding the etiology of these conditions is essential for developing preventive strategies. This study thus aims to identify regulatory networks of microRNAs (miRNAs), transcriptional factors (TFs) and non-TF genes associated with cleft lip (CL) that are conserved in humans and mice. Notably, we found that miR-27b, miR-133b, miR-205, miR-376b and miR-376c were involved in the regulation of CL-associated gene expression in both humans and mice. Among the candidate miRNAs, the overexpression of miR-27b, miR-133b and miR-205, but not miR-376b and miR-376c, significantly inhibited cell proliferation through suppression of CL-associated genes (miR-27b suppressed PAX9 and RARA; miR-133b suppressed FGFR1, PAX7, and SUMO1; and miR-205 suppressed PAX9 and RARA) in cultured human and mouse lip mesenchymal cells. Taken together, our results suggest that elevated expression of miR-27b, miR-133b and miR-205 may play a crucial role in CL through the suppression of genes associated with CL.


Assuntos
Fenda Labial , Fissura Palatina , MicroRNAs , Animais , Proliferação de Células/genética , Fenda Labial/genética , Fissura Palatina/genética , Redes Reguladoras de Genes , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Development ; 147(24)2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33234712

RESUMO

Craniofacial development is regulated through dynamic and complex mechanisms that involve various signaling cascades and gene regulations. Disruption of such regulations can result in craniofacial birth defects. Here, we propose the first developmental stage-specific network approach by integrating two crucial regulators, transcription factors (TFs) and microRNAs (miRNAs), to study their co-regulation during craniofacial development. Specifically, we used TFs, miRNAs and non-TF genes to form feed-forward loops (FFLs) using genomic data covering mouse embryonic days E10.5 to E14.5. We identified key novel regulators (TFs Foxm1, Hif1a, Zbtb16, Myog, Myod1 and Tcf7, and miRNAs miR-340-5p and miR-129-5p) and target genes (Col1a1, Sgms2 and Slc8a3) expression of which changed in a developmental stage-dependent manner. We found that the Wnt-FoxO-Hippo pathway (from E10.5 to E11.5), tissue remodeling (from E12.5 to E13.5) and miR-129-5p-mediated Col1a1 regulation (from E10.5 to E14.5) might play crucial roles in craniofacial development. Enrichment analyses further suggested their functions. Our experiments validated the regulatory roles of miR-340-5p and Foxm1 in the Wnt-FoxO-Hippo subnetwork, as well as the role of miR-129-5p in the miR-129-5p-Col1a1 subnetwork. Thus, our study helps understand the comprehensive regulatory mechanisms for craniofacial development.


Assuntos
Ossos Faciais/crescimento & desenvolvimento , MicroRNAs/genética , Crânio/crescimento & desenvolvimento , Fatores de Transcrição/genética , Animais , Proteína Forkhead Box M1/genética , Regulação Neoplásica da Expressão Gênica/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Proteína MyoD/genética , Miogenina/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Fatores de Transcrição/classificação , Via de Sinalização Wnt/genética
6.
Biol Pharm Bull ; 46(6): 824-829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258148

RESUMO

Circadian rhythms are endogenous oscillators that regulate 24 h behavioral and physiological processes. Our previous investigation demonstrated that bromobenzene metabolite (4-bromocatechol: 4-BrCA) exhibited chronotoxicity (i.e., the nephrotoxicity induced by 4-BrCA was observed during the dark phase, while not observed at light phase in mice). However, the molecular mechanism is still unknown. The aim of the present study is to investigate the cellular molecule(s) involved in the 4-BrCA-induced nephrotoxicity using mouse renal cortex tubular cell lines (MuRTE61 cells). We found that 4-BrCA showed dose dependent (0.01-1 mM) cell proliferation defect in MuRTE61 cells. By treating with 0.03 mM 4-BrCA, we demonstrated that major clock genes (Bmal1, Clock, Cry1, Cry2, Per1, and Per2) were significantly downregulated. Interestingly, the expression levels of two genes, Bmal1 and Clock, continued to decrease after 3 h of treatment with 4-BrCA, while Cry1, Per1, and Per2 were unchanged until 24 h of treatment. Moreover, BMAL1 and CLOCK levels are higher at light phase. We speculated that BMAL1 and CLOCK might function defensively against 4-BrCA-induced nephrotoxicity since the expression levels of Bmal1 and Clock were rapidly decreased. Finally, overexpression of Bmal1 and Clock restored 4-BrCA-induced cell proliferation defect in MuRTE61 cells. Taken together, our results suggest that Bmal1 and Clock have protective roles against 4-BrCA-induced nephrotoxicity.


Assuntos
Fatores de Transcrição ARNTL , Bromobenzenos , Camundongos , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Ritmo Circadiano/genética , Regulação da Expressão Gênica
7.
Cell Mol Life Sci ; 79(6): 307, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35593968

RESUMO

Sjögren's syndrome (SjS) is a chronic autoimmune disease characterized by immune cell infiltration of the exocrine glands, mainly the salivary and lacrimal glands. Despite recent advances in the clinical and mechanistic characterization of the disease, its etiology remains largely unknown. Here, we report that mice with a deficiency for either Atg7 or Atg3, which are enzymes involved in the ubiquitin modification pathway, in the salivary glands exhibit a SjS-like phenotype, characterized by immune cell infiltration with autoantibody detection, acinar cell death, and dry mouth. Prior to the onset of the SjS-like phenotype in these null mice, we detected an accumulation of secretory vesicles in the acinar cells of the salivary glands and found that GATE16, an uncharacterized autophagy-related molecule activated by ATG7 (E1-like enzyme) and ATG3 (E2-like enzyme), was highly expressed in these cells. Notably, GATE16 was activated by isoproterenol, an exocytosis inducer, and localized on the secretory vesicles in the acinar cells of the salivary glands. Failure to activate GATE16 was correlated with exocytosis defects in the acinar cells of the salivary glands in Atg7 and Atg3 cKO mice. Taken together, our results show that GATE16 activation regulated by the autophagic machinery is crucial for exocytosis and that defects in this pathway cause SjS.


Assuntos
Doenças Autoimunes , Síndrome de Sjogren , Animais , Autoanticorpos/metabolismo , Modelos Animais de Doenças , Exocitose , Camundongos , Glândulas Salivares , Síndrome de Sjogren/genética , Síndrome de Sjogren/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-38092388

RESUMO

BACKGROUND: This study aimed to investigate diurnal variations in copper-induced hepatic toxicity and the molecular mechanisms underlying this chronotoxicity. METHODS: Male C57BL/6J mice were intraperitoneally injected with copper chloride (CuCl2) at zeitgeber time 2 (ZT2) or 14 (ZT14), twice per week for 5 or 8 weeks. Seventy-two hours after the final CuCl2 injection, the mice were euthanized, and plasma samples were collected. The livers and kidneys were collected and weighed. In vitro experiments were performed to assess cell viability and fluctuations in clock gene expression levels in Hepa1-6 cells after CuCl2 treatment. We examined copper homeostasis- and apoptosis-related genes under clock genes overexpression. RESULTS: Repeated CuCl2 administration for 8 weeks resulted in more severe toxicity at ZT14 compared to ZT2. CuCl2 administration at ZT14 elevated plasma aspartate aminotransferase, hepatic tumor necrosis factor-α, and interleukin-6 for 5 weeks, whereas the toxic effects of CuCl2 administration at ZT2 were weaker. Moreover, CuCl2 treatment inhibited Hepa1-6 cell viability in a dose-dependent manner. We observed increased expression of three clock genes (Ciart, Cry2, and Per1) after CuCl2 treatment. Among them, overexpression of Cry2 and Per1 accelerated CuCl2-induced inhibition of Hepa1-6 cell viability. Moreover, we found that the overexpression of Cry2 and Per1 regulates cleaved caspase-3 by modulating the copper transporter genes ATP7B and CTR1. CONCLUSION: These results suggest that CuCl2-induced diurnal toxicity is associated with Cry2 and Per1 expression through the regulation of copper transporter genes in mice.


Assuntos
Cobre , Fatores de Transcrição , Masculino , Camundongos , Animais , Cobre/toxicidade , Cobre/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Fígado/metabolismo , Ritmo Circadiano , Criptocromos/genética , Criptocromos/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
9.
Development ; 146(20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31558435

RESUMO

It has been long appreciated that sex hormone receptors are expressed in various non-gonadal organs. However, it remains unclear how sex hormones regulate the morphogenesis of these non-gonadal organs. To address this issue, we used a male mouse model of androgen-dependent salivary gland morphogenesis. Mice with excessive cholesterol synthesis in the salivary glands exhibited defects in the maturation of granular convoluted tubules (GCTs), which is regulated through sex hormone-dependent cascades. We found that excessive cholesterol synthesis resulted in autophagy failure specifically in the duct cells of salivary glands, followed by the accumulation of NRF2, a transcription factor known as one of the specific substrates for autophagy. The accumulated NRF2 suppressed the expression of Foxa1, which forms a transcriptional complex with the androgen receptor to regulate target genes. Taken together, our results indicate that cholesterol metabolism plays a crucial role in GCT differentiation through autophagy.


Assuntos
Autofagia/fisiologia , Diferenciação Celular/fisiologia , Colesterol/metabolismo , Glândula Submandibular/metabolismo , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo , Glândula Submandibular/citologia
10.
Brief Bioinform ; 21(4): 1465-1478, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31589286

RESUMO

Cleft palate (CP) is the second most common congenital birth defect. The etiology of CP is complicated, with involvement of various genetic and environmental factors. To investigate the gene regulatory mechanisms, we designed a powerful regulatory analytical approach to identify the conserved regulatory networks in humans and mice, from which we identified critical microRNAs (miRNAs), target genes and regulatory motifs (miRNA-TF-gene) related to CP. Using our manually curated genes and miRNAs with evidence in CP in humans and mice, we constructed miRNA and transcription factor (TF) co-regulation networks for both humans and mice. A consensus regulatory loop (miR17/miR20a-FOXE1-PDGFRA) and eight miRNAs (miR-140, miR-17, miR-18a, miR-19a, miR-19b, miR-20a, miR-451a and miR-92a) were discovered in both humans and mice. The role of miR-140, which had the strongest association with CP, was investigated in both human and mouse palate cells. The overexpression of miR-140-5p, but not miR-140-3p, significantly inhibited cell proliferation. We further examined whether miR-140 overexpression could suppress the expression of its predicted target genes (BMP2, FGF9, PAX9 and PDGFRA). Our results indicated that miR-140-5p overexpression suppressed the expression of BMP2 and FGF9 in cultured human palate cells and Fgf9 and Pdgfra in cultured mouse palate cells. In summary, our conserved miRNA-TF-gene regulatory network approach is effective in detecting consensus miRNAs, motifs, and regulatory mechanisms in human and mouse CP.


Assuntos
Fissura Palatina/genética , Sequência Conservada , Redes Reguladoras de Genes , MicroRNAs/genética , Fatores de Transcrição/genética , Animais , Humanos , Camundongos
11.
J Bone Miner Metab ; 40(5): 839-852, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35947192

RESUMO

INTRODUCTION: Osteoblasts require substantial amounts of energy to synthesize the bone matrix and coordinate skeleton mineralization. This study analyzed the effects of mitochondrial dysfunction on bone formation, nano-organization of collagen and apatite, and the resultant mechanical function in mouse limbs. MATERIALS AND METHODS: Limb mesenchyme-specific Tfam knockout (Tfamf/f;Prx1-Cre: Tfam-cKO) mice were analyzed morphologically and histologically, and gene expressions in the limb bones were assessed by in situ hybridization, qPCR, and RNA sequencing (RNA-seq). Moreover, we analyzed the mitochondrial function of osteoblasts in Tfam-cKO mice using mitochondrial membrane potential assay and transmission electron microscopy (TEM). We investigated the pathogenesis of spontaneous bone fractures using immunohistochemical analysis, TEM, birefringence analyzer, microbeam X-ray diffractometer and nanoindentation. RESULTS: Forelimbs in Tfam-cKO mice were significantly shortened from birth, and spontaneous fractures occurred after birth, resulting in severe limb deformities. Histological and RNA-seq analyses showed that bone hypoplasia with a decrease in matrix mineralization was apparent, and the expression of type I collagen and osteocalcin was decreased in osteoblasts of Tfam-cKO mice, although Runx2 expression was unchanged. Decreased type I collagen deposition and mineralization in the matrix of limb bones in Tfam-cKO mice were associated with marked mitochondrial dysfunction. Tfam-cKO mice bone showed a significantly lower Young's modulus and hardness due to poor apatite orientation which is resulted from decreased osteocalcin expression. CONCLUSION: Mice with limb mesenchyme-specific Tfam deletions exhibited spontaneous limb bone fractures, resulting in severe limb deformities. Bone fragility was caused by poor apatite orientation owing to impaired osteoblast differentiation and maturation.


Assuntos
Fraturas Espontâneas , Animais , Apatitas , Colágeno Tipo I/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fraturas Espontâneas/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Integrases , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteocalcina/metabolismo
12.
Arch Orthop Trauma Surg ; 142(4): 607-613, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33226460

RESUMO

PURPOSE: To investigate whether tibial tubercle fracture affected clinical outcomes and bony union in medial opening wedge high tibial osteotomy with distal tibial tubercle osteotomy (DTO) and to determine the anatomical risk factors for tibial tubercle fracture. MATERIALS AND METHODS: All patients who underwent DTO were retrospectively reviewed, and 104 successive patients were included. The Knee Society Score and complications including tibial tubercle fracture were recorded. On radiographs and computed tomography scans, the length, thickness, width, height, and bony union of the osteotomized tibial tubercle and the posterior tibial slope were statistically analysed. RESULTS: Fracture of the tibial tubercle occurred intraoperatively in 11 patients (10.6%) and in the postoperative period in 1 (1.0%). The case of postoperative fracture showed non-union. There was no significant difference in the Knee Society Score between the non-fracture and fracture groups. There were significant differences in the posterior tibial slope and the height of the tibial tubercle between the groups (p < 0.0001 for each comparison). The logistic regression analysis showed that the height of the tibial tubercle was associated with a higher risk of the fracture of the tibial tubercle (p < 0.01; OR, 1.548; 95% CI, 1.149-2.085). However, there were no significant differences in the bony union rate of the tibial tubercle at 6 months after surgery between the groups. CONCLUSIONS: Tibial tubercle fracture did not affect the clinical outcome and bony union in spite of the relatively high occurrence rate. Anatomical risk factors for the fractures was a lower tibial tubercle position. LEVEL OF EVIDENCE: Level IV.


Assuntos
Osteoartrite do Joelho , Fraturas da Tíbia , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Osteoartrite do Joelho/cirurgia , Osteotomia/efeitos adversos , Osteotomia/métodos , Estudos Retrospectivos , Tíbia/cirurgia , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/etiologia , Fraturas da Tíbia/cirurgia
13.
Opt Lett ; 46(2): 262-265, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33449003

RESUMO

A blended FC-V-50 and TZ-001 polymer-based microdisk laser was fabricated by the ink-jet printing method and used for biosensing applications. The FC-V-50 polymer has a negative charge due to the presence of carboxyl functional groups, and the TZ-001 polymer has a positive charge due to the tertiary amine group at a pH of seven. In biosensing applications, non-specific adsorption due to opposite charges of biomolecules and microdisk surfaces can adversely affect the performance of the biosensor. By mixing FC-V-50 and TZ-001 polymers in different ratios, the microdisk surface charge was controlled, and the non-specific adsorption of bovine serum albumin and lysozyme was studied. In addition, the label-free biosensing of streptavidin was demonstrated using a blended polymer-based microdisk laser. This work reports, to the best of our knowledge, the first demonstration of a blended polymer microdisk laser for controlling the non-specific adsorption of biomolecules.


Assuntos
Técnicas Biossensoriais/instrumentação , Lasers de Estado Sólido , Sistemas Microeletromecânicos , Muramidase/metabolismo , Polímeros/metabolismo , Impressão Tridimensional , Adsorção , Desenho de Equipamento , Impressão , Soroalbumina Bovina/metabolismo
14.
Biol Pharm Bull ; 44(1): 150-153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390544

RESUMO

Bromobenzene (BB) is known to pose a serious threat to human health. We previously demonstrated that BB showed chronotoxicity, that is, daily fluctuations in the severity of hepatotoxicity induced in mice. Although BB showed mild nephrotoxicity, a daily fluctuation was not observed in this toxicity. This might be attributed to the fact that BB-induced chronotoxicity is observed only in the liver and not in the kidneys and that the damage caused by BB is prominent in the liver, masking the daily fluctuation in nephrotoxicity. To confirm these two possibilities, we examined the daily fluctuations in nephrotoxicity due to BB intermediate metabolites that target the kidneys: 3-bromophenol, bromohydroquinone, and 4-bromocatechol. Mice were injected with 3-bromophenol, bromohydroquinone, or 4-bromocatechol intraperitoneally at six different time points in a day (zeitgeber time (ZT): ZT2, ZT6, ZT10, ZT14, ZT18, or ZT22). Mortality was monitored for 7 d post-injection. Mice were more sensitive to the acute toxicity of these metabolites around at ZT14 (dark-phase) exposure than around at ZT2 (light-phase) exposure. Furthermore, mice administered with a non-lethal dose of 4-bromocatechol showed significant increases in the levels of plasma blood urea nitrogen and renal malondialdehyde at ZT14 exposure. Moreover, glutathione peroxidase-4, a ferroptosis indicator, was attenuated at ZT14 exposure. These results indicate the toxicity of BB metabolites was higher during the dark-phase exposure, and demonstrate the reason why the diurnal variation of nephrotoxicity by BB was not observed in our previous report is that renal damage was masked due to severe hepatic damage.


Assuntos
Bromobenzenos/metabolismo , Bromobenzenos/toxicidade , Ritmo Circadiano/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Animais , Fenômenos Cronobiológicos/efeitos dos fármacos , Fenômenos Cronobiológicos/fisiologia , Ritmo Circadiano/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR
15.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830336

RESUMO

Cleft lip with or without cleft palate (CL/P) is one of the most common congenital birth defects. This study aims to identify novel pathogenic microRNAs associated with cleft palate (CP). Through data analyses of miRNA-sequencing for developing palatal shelves of C57BL/6J mice, we found that miR-449a-3p, miR-449a-5p, miR-449b, miR-449c-3p, and miR-449c-5p were significantly upregulated, and that miR-19a-3p, miR-130a-3p, miR-301a-3p, and miR-486b-5p were significantly downregulated, at embryonic day E14.5 compared to E13.5. Among them, overexpression of the miR-449 family (miR-449a-3p, miR-449a-5p, miR-449b, miR-449c-3p, and miR-449c-5p) and miR-486b-5p resulted in reduced cell proliferation in primary mouse embryonic palatal mesenchymal (MEPM) cells and mouse cranial neural crest cell line O9-1. On the other hand, inhibitors of miR-130a-3p and miR-301a-3p significantly reduced cell proliferation in MEPM and O9-1 cells. Notably, we found that treatment with dexamethasone, a glucocorticoid known to induce CP in mice, suppressed miR-130a-3p expression in both MEPM and O9-1 cells. Moreover, a miR-130a-3p mimic could ameliorate the cell proliferation defect induced by dexamethasone through normalization of Slc24a2 expression. Taken together, our results suggest that miR-130-3p plays a crucial role in dexamethasone-induced CP in mice.


Assuntos
Fissura Palatina/genética , Dexametasona/farmacologia , Glucocorticoides/farmacologia , MicroRNAs/genética , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Animais , Antagomirs/genética , Antagomirs/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fissura Palatina/induzido quimicamente , Fissura Palatina/metabolismo , Fissura Palatina/patologia , Modelos Animais de Doenças , Embrião de Mamíferos , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/classificação , MicroRNAs/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Crista Neural/citologia , Crista Neural/efeitos dos fármacos , Crista Neural/metabolismo , Cultura Primária de Células , Transdução de Sinais , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo
16.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572377

RESUMO

Cleft lip (CL) is one of the most common birth defects. It is caused by either genetic mutations or environmental factors. Recent studies suggest that environmental factors influence the expression of noncoding RNAs [e.g., microRNA (miRNA)], which can regulate the expression of genes crucial for cellular functions. In this study, we examined which miRNAs are associated with CL. Among 10 candidate miRNAs (miR-98-3p, miR-101a-3p, miR-101b-3p, miR-141-3p, miR-144-3p, miR-181a-5p, miR-196a-5p, miR-196b-5p, miR-200a-3p, and miR-710) identified through our bioinformatic analysis of CL-associated genes, overexpression of miR-181a-5p, miR-196a-5p, miR-196b-5p, and miR-710 inhibited cell proliferation through suppression of genes associated with CL in cultured mouse embryonic lip mesenchymal cells (MELM cells) and O9-1 cells, a mouse cranial neural crest cell line. In addition, we found that phenytoin, an inducer of CL, decreased cell proliferation through miR-196a-5p induction. Notably, treatment with a specific inhibitor for miR-196a-5p restored cell proliferation through normalization of expression of CL-associated genes in the cells treated with phenytoin. Taken together, our results suggest that phenytoin induces CL through miR-196a-5p induction, which suppresses the expression of CL-associated genes.


Assuntos
Fenda Labial/induzido quimicamente , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , MicroRNAs/metabolismo , Fenitoína/toxicidade , Teratogênicos/toxicidade , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Fenda Labial/genética , Fenda Labial/patologia , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Humanos , Lábio/citologia , Lábio/embriologia , Exposição Materna/efeitos adversos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , MicroRNAs/antagonistas & inibidores , Células-Tronco Embrionárias Murinas , Cultura Primária de Células
17.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672174

RESUMO

Amelogenesis imperfecta is a congenital form of enamel hypoplasia. Although a number of genetic mutations have been reported in humans, the regulatory network of these genes remains mostly unclear. To identify signatures of biological pathways in amelogenesis imperfecta, we conducted bioinformatic analyses on genes associated with the condition in humans. Through an extensive search of the main biomedical databases, we found 56 genes in which mutations and/or association/linkage were reported in individuals with amelogenesis imperfecta. These candidate genes were further grouped by function, pathway, protein-protein interaction, and tissue-specific expression patterns using various bioinformatic tools. The bioinformatic analyses highlighted a group of genes essential for extracellular matrix formation. Furthermore, advanced bioinformatic analyses for microRNAs (miRNAs), which are short non-coding RNAs that suppress target genes at the post-transcriptional level, predicted 37 candidates that may be involved in amelogenesis imperfecta. To validate the miRNA-gene regulation association, we analyzed the target gene expression of the top seven candidate miRNAs: miR-3195, miR-382-5p, miR-1306-5p, miR-4683, miR-6716-3p, miR-3914, and miR-3935. Among them, miR-1306-5p, miR-3195, and miR-3914 were confirmed to regulate ameloblast differentiation through the regulation of genes associated with amelogenesis imperfecta in AM-1 cells, a human ameloblastoma cell line. Taken together, our study suggests a potential role for miRNAs in amelogenesis imperfecta.


Assuntos
Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , MicroRNAs/genética , Ameloblastos/patologia , Ameloblastos/fisiologia , Diferenciação Celular/genética , Linhagem Celular , Biologia Computacional/métodos , Humanos , Mapas de Interação de Proteínas/genética , Reprodutibilidade dos Testes
18.
Mol Pharm ; 17(4): 1237-1247, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32129629

RESUMO

DNA vaccinations are promising strategies for treating diseases that require cellular immunity (i.e., cancer and protozoan infection). Here, we report on the use of a liposomal nanocarrier (lipid nanoparticles (LNPs)) composed of an SS-cleavable and pH-activated lipidlike material (ssPalm) as an in vivo DNA vaccine. After subcutaneous administration, the LNPs containing an ssPalmE, an ssPalm with vitamin E scaffolds, elicited a higher gene expression activity in comparison with the other LNPs composed of the ssPalms with different hydrophobic scaffolds. Immunization with the ssPalmE-LNPs encapsulating plasmid DNA that encodes ovalbumin (OVA, a model tumor antigen) or profilin (TgPF, a potent antigen of Toxoplasma gondii) induced substantial antitumor or antiprotozoan effects, respectively. Flow cytometry analysis of the cells that had taken up the LNPs in draining lymph nodes (dLNs) showed that the ssPalmE-LNPs were largely taken up by macrophages and a small number of dendritic cells. We found that the transient deletion of CD169+ macrophages, a subpopulation of macrophages that play a key role in cancer immunity, unexpectedly enhanced the activity of the DNA vaccine. These data suggest that the ssPalmE-LNPs are effective DNA vaccine carriers, and a strategy for avoiding their being trapped by CD169+ macrophages will be a promising approach for developing next-generation DNA vaccines.


Assuntos
Lipídeos/química , Nanopartículas/química , Infecções por Protozoários/imunologia , Vacinas de DNA/química , Vacinas de DNA/imunologia , Vitamina E/imunologia , Animais , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , DNA/imunologia , Células Dendríticas/imunologia , Feminino , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Imunidade Celular/imunologia , Imunização/métodos , Lipossomos/química , Lipossomos/imunologia , Linfonodos/imunologia , Macrófagos/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Ovalbumina/imunologia , Plasmídeos/imunologia , Vitamina E/química
19.
Biol Pharm Bull ; 43(1): 53-58, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31902932

RESUMO

The aim of the present study was to investigate the "chronotoxicity" of streptomycin (SM) in relation to its circadian periodicity. Male ICR mice were injected intraperitoneally with SM (780 mg/kg, one shot) one of six time points throughout the day. Mortality was monitored until 14 d after the injection and clearly differed depending on the timing of the injection (i.e., mice were more sensitive to injection during the dark phase). Moreover, when mice were administered with non-lethal doses of SM (550 mg/kg, every 24 h for 3 d, in the light phase or dark phase), the levels of nephrotoxicity indicators (blood urea nitrogen and renal levels of malondialdehyde and cyclooxygenase-2) were significantly increased by the injection in the dark phase, but not in the light phase. These results suggested that SM showed clear chronotoxicity. Our current data indicated that chronotoxicology may provide valuable information on the importance of injection timings for evaluations of toxicity and undesirable side effects.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Antibacterianos/administração & dosagem , Antibacterianos/toxicidade , Estreptomicina/administração & dosagem , Estreptomicina/toxicidade , Injúria Renal Aguda/patologia , Animais , Ritmo Circadiano , Esquema de Medicação , Injeções , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Camundongos Endogâmicos ICR
20.
Knee Surg Sports Traumatol Arthrosc ; 28(11): 3474-3480, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31748918

RESUMO

PURPOSE: The purpose of this study was to evaluate the clinical outcomes and meniscus healing after arthroscopic repair of horizontal-cleavage meniscus tears, compared with vertical-longitudinal meniscus tears. METHODS: This was a retrospective review of a consecutive series of 52 meniscal repairs for horizontal-cleavage tears (n = 27) or vertical-longitudinal tears (n = 25); the groups were compared with respect to clinical symptoms and meniscal healing. Arthroscopic meniscal repair was performed using the inside-out technique with a marrow-stimulating technique. Clinical symptoms were evaluated using the Lysholm score and Knee injury and osteoarthritis outcome score (KOOS). Meniscus healing was evaluated by MRI. RESULTS: The mean follow-up periods were 35.4 ± 8.9 months in the horizontal-cleavage tear group and 39.8 ± 8.3 months in the vertical-longitudinal tear group. There were no significant differences in Lysholm score and KOOS, including each subscale, between the horizontal-cleavage tear- and vertical-longitudinal tear-groups at the final follow-up. At the final follow-up, MRI meniscus grades 0 and 1 were significantly more frequent in the vertical-longitudinal tear-group than in the horizontal-cleavage tear-group, while grade 3 was significantly more frequent in the horizontal-cleavage tear group than in the vertical-longitudinal tear group (p < 0.0001). CONCLUSIONS: Although meniscus healing of horizontal-cleavage tears may be poor, arthroscopic repair should be considered for horizontal-cleavage tears because it does provide good clinical outcomes. LEVEL OF EVIDENCE: IV.


Assuntos
Artroscopia/métodos , Meniscos Tibiais/cirurgia , Lesões do Menisco Tibial/cirurgia , Adolescente , Adulto , Idoso , Medula Óssea/cirurgia , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Meniscos Tibiais/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos Retrospectivos , Ruptura/cirurgia , Resultado do Tratamento , Cicatrização , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA