Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(4)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37108912

RESUMO

Direct contact between the conidia of entomopathogenic fungi (EPF) and their host is a prerequisite to successful infection; the host can, therefore, be infected by both direct treatment and by transmission of fungal inoculum from infested surfaces. This unique characteristic makes EPF especially relevant for the control of cryptic insects. In the case of the red palm weevil (RPW) Rhynchophorus ferrugineus, the eggs and larvae are almost inaccessible to direct-contact treatment. The objective of the present study was to investigate the mechanism of conidia transmission from a treated surface to host eggs and larvae. Foam pieces infested with Metarhizium brunneum conidial powder, conidial suspension, or distilled water were used as a laying surface for RPW females. The number of eggs laid was not affected by the EPF treatments and ranged from 2 to 14 eggs per female. However, hatching rate and larval survival were significantly reduced in the conidial powder treatment, resulted in 1.5% hatching and no live larvae. In the conidial suspension treatment, 21% of laid eggs hatched, compared to 72% in the control treatment. In both M. brunneum treatments, females' proboscis, front legs and ovipositor were covered with conidia. The females transferred conidia in both treatments to the laying holes, reaching up to 15 mm in depth. This resulted in reduced egg-hatching rate and significant larval mortality due to fungal infection. The stronger effect on egg and larval survival using dry conidia seemed to result from better conidial adhesion to the female weevil in this formulation. In future studies, this dissemination mechanism will be examined as a prevention strategy in date plantations.

2.
Colloids Surf B Biointerfaces ; 206: 111958, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34237526

RESUMO

A new formulation for biological pest control with significant UV protection capability has been developed in this research. The formulation is based on individual encapsulation of fungal conidia in an oil/water Pickering emulsion. The droplets size of the emulsions was tuned to meet the demands of single conidia encapsulation in the oil droplets. The emulsions are stabilized by amine-functionalized TiO2 (titania) nanoparticles (NPs). The droplet size, stability, and structure of the emulsions were investigated at different TiO2 contents and oil/water phase ratios. Most of the emulsions remained stable for 6 months. The structural properties of the Pickering emulsions were characterized by confocal microscopy and high-resolution cryogenic scanning electron microscopy (cryo-HRSEM). The presence of the TiO2 particles at the interface was confirmed by both confocal microscopy and cryo-HRSEM. Metarhizium brunneum-7 (Mb7) conidia were added to the emulsions. The successful encapsulation of individual conidia in the oil droplets was confirmed by confocal microscopy. The individual encapsulation of the conidia in the emulsions was significantly improved by dispersing the conidia in a 0.02 % Triton X-100 solution prior to emulsification. In addition, the bioassay results have shown, that exposure of the encapsulated conidia to natural UV light did not change their germination rates, however, the unprotected conidia demonstrated a dramatic decrease in their germination rates. These results confirm the UV protection capability of the studied emulsions.


Assuntos
Nanopartículas , Raios Ultravioleta , Agentes de Controle Biológico , Encapsulamento de Células , Emulsões , Metarhizium , Tamanho da Partícula , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA