Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 40(13): 6878-6883, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501274

RESUMO

Certain odors have been shown not only to cause health problems and stress but also to affect skin barrier function. Therefore, it is important to understand olfactory masking to develop effective fragrances to mask malodors. However, olfaction and olfactory masking mechanisms are not yet fully understood. To understand the mechanism of the masking effect that has been studied, the responses of several target substance (TS) molecules-1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) mixed molecular layers to odorant (OD) molecules were examined as a simple experimental model of epithelial cellular membranes injured by TS molecules. Here, we examined trans-2-nonenal, 1-nonanal, trans-2-decenal, and 1-decanal as TS molecules to clarify the effects of double bonds and hydrocarbon chain lengths on the phospholipid molecular layer. In addition, benzaldehyde and cyclohexanecarboxaldehyde were utilized as OD molecules to clarify the masking effect of the aromatic ring. Surface pressure (Π)-area (A) isotherms were measured to clarify the adsorption or desorption of TS and OD molecules on the DOPC molecular layer. In addition, Fourier transform infrared spectroscopy was performed to clarify the interactions among DOPC, TS, and OD molecules. We found that TS molecules with and without double bonds had different effects on the DOPC molecular layer and that molecules with shorter chain lengths had greater effects on the DOPC molecular layer. Furthermore, OD molecules with aromatic rings counteracted the effects of the TS molecules. On the basis of this research, not only a detailed mechanism by which odor molecules affect lipid membranes without mediating olfactory receptors is elucidated but also more effective OD molecules with masking effects are proposed.


Assuntos
Bicamadas Lipídicas , Fosfatidilcolinas , Estrutura Molecular , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Fosfolipídeos/química , Glicerilfosforilcolina
2.
ACS Sens ; 8(12): 4494-4503, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38060767

RESUMO

We propose a novel odor-sensing system based on the dynamic response of phospholipid molecular layers for artificial olfaction. Organisms obtain information about their surroundings based on multidimensional information obtained from sniffing, i.e., periodic perturbations. Semiconductor- and receptor-based odor sensors have been developed previously. However, these sensors predominantly identify odors based on one-dimensional information, which limits the type of odor molecule they can identify. Therefore, the development of odor sensors that mimic the olfactory systems of living organisms is useful to overcome this limitation. In this study, we developed a novel odor-sensing system based on the dynamics of phospholipids that responds delicately to chemical substances at room temperature using multidimensional information obtained from periodic perturbations. Odor molecules are periodically supplied to the phospholipid molecular layer as an input sample. The waveform of the surface tension of the phospholipid molecular layer changes depending on the odor molecules and serves as an output. Such characteristic responses originating from the dynamics of odor molecules on the phospholipid molecular layer can be reproduced numerically. The phospholipid molecular layer amplified the information originating from the odor molecule, and the mechanism was evaluated by using surface pressure-area isotherms. This paper offers a platform for an interface-chemistry-based artificial sniffing system as an active sensor and a novel olfactory mechanism via physicochemical responses of the receptor-independent membranes of the organism.


Assuntos
Odorantes , Olfato , Olfato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA