Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(26): 5086-5094, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888040

RESUMO

In this paper we present an n-node flexible active matter model to study the collective motion due to the flocking of individual achiral agents on a two-dimensional surface. By introducing a measure of the direction detectability of the agents to tune their body direction towards the food source, we find that a spontaneous stable cluster rotation emerges with increasing direction detectability. The spontaneous rotation is synchronized with the chirality produced by the alignment of their bodies under the impetus of the active force. A linear relationship between the normalized angular velocity and chirality is observed and the numerical simulation agrees well with the analytical derivation. The conclusions explain well the spontaneous stable rotation of clusters that exists in many flexible active matter systems, like worms or dogs, when they flock to the same single source.

2.
Soft Matter ; 19(40): 7828-7835, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37796173

RESUMO

We use numerical simulations and linear stability analysis to study the dynamics of an active liquid crystal film on a substrate in the regime where the passive system would be isotropic. Extensile activity builds up local orientational order and destabilizes the quiescent isotropic state above a critical activity, eventually resulting in spatiotemporal chaotic dynamics akin to the one observed ubiquitously in the nematic state. Here we show that tuning substrate friction yields a variety of emergent structures at intermediate activity, including lattices of flow vortices with associated regular arrangements of topological defects and a new state where flow vortices trap pairs of +1/2 defect that chase each other's tail. These chiral units spontaneously pick the sense of rotation and organize in a hexagonal lattice, surrounded by a diffuse flow of opposite rotation to maintain zero net vorticity. The length scale of these emergent structures is set by the screening length of the flow, controlled by the shear viscosity η and the substrate friction Γ, and can be captured by simple mode selection of the vortical flows. We demonstrate that the emergence of coherent structures can be interpreted as a phase separation of vorticity, where friction plays a role akin to that of birth/death processes in breaking conservation of the phase separating species and selecting a characteristic scale for the patterns. Our work shows that friction provides an experimentally accessible tuning parameter for designing controlled active flows.

3.
Proc Natl Acad Sci U S A ; 117(33): 19767-19772, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32753380

RESUMO

We examine a nonreciprocally coupled dynamical model of a mixture of two diffusing species. We demonstrate that nonreciprocity, which is encoded in the model via antagonistic cross-diffusivities, provides a generic mechanism for the emergence of traveling patterns in purely diffusive systems with conservative dynamics. In the absence of nonreciprocity, the binary fluid mixture undergoes a phase transition from a homogeneous mixed state to a demixed state with spatially separated regions rich in one of the two components. Above a critical value of the parameter tuning nonreciprocity, the static demixed pattern acquires a finite velocity, resulting in a state that breaks both spatial and time-reversal symmetry, as well as the reflection parity of the static pattern. We elucidate the generic nature of the transition to traveling patterns using a minimal model that can be studied analytically. Our work has direct relevance to nonequilibrium assembly in mixtures of chemically interacting colloids that are known to exhibit nonreciprocal effective interactions, as well as to mixtures of active and passive agents where traveling states of the type predicted here have been observed in simulations. It also provides insight on transitions to traveling and oscillatory states seen in a broad range of nonreciprocal systems with nonconservative dynamics, from reaction-diffusion and prey-predators models to multispecies mixtures of microorganisms with antagonistic interactions.

4.
Phys Rev Lett ; 123(17): 178001, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31702266

RESUMO

The transition from monolayers to multilayered structures in bacterial colonies is a fundamental step in biofilm development. Observed across different morphotypes and species, this transition is triggered within freely growing bacterial microcolonies comprising a few hundred cells. Using a combination of numerical simulations and analytical modeling, here we demonstrate that this transition originates from the competition between growth-induced in-plane active stresses and vertical restoring forces, due to the cell-substrate interactions. Using a simple chainlike colony of laterally confined cells, we show that the transition sets when individual cells become unstable to rotations; thus it is localized and mechanically deterministic. Asynchronous cell division renders the process stochastic, so that all the critical parameters that control the onset of the transition are continuously distributed random variables. Here we demonstrate that the occurrence of the first division in the colony can be approximated as a Poisson process in the limit of large cell numbers. This allows us to approximately calculate the probability distribution function of the position and time associated with the first extrusion. The rate of such a Poisson process can be identified as the order parameter of the transition, thus highlighting its mixed deterministic-stochastic nature.


Assuntos
Bactérias/crescimento & desenvolvimento , Modelos Biológicos , Técnicas Bacteriológicas
5.
Soft Matter ; 15(15): 3264-3272, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30920553

RESUMO

We study the dynamics of a tunable 2D active nematic liquid crystal composed of microtubules and kinesin motors confined to an oil-water interface. Kinesin motors continuously inject mechanical energy into the system through ATP hydrolysis, powering the relative microscopic sliding of adjacent microtubules, which in turn generates macroscale autonomous flows and chaotic dynamics. We use particle image velocimetry to quantify two-dimensional flows of active nematics and extract their statistical properties. In agreement with the hydrodynamic theory, we find that the vortex areas comprising the chaotic flows are exponentially distributed, which allows us to extract the characteristic system length scale. We probe the dependence of this length scale on the ATP concentration, which is the experimental knob that tunes the magnitude of the active stress. Our data suggest a possible mapping between the ATP concentration and the active stress that is based on the Michaelis-Menten kinetics that governs the motion of individual kinesin motors.

6.
Appl Opt ; 54(22): 6948-54, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26368114

RESUMO

A multiple beam interference model based on the ray tracing method and interference theory is built to analyze the interference patterns of a capillary tube filled with a liquid. The relations between the angular widths of the interference fringes and the parameters of both the capillary and liquid are derived. Based on these relations, an approach is proposed to simultaneously determine four parameters of the capillary, i.e., the inner and outer radii of the capillary, the refractive indices of the liquid, and the wall material.

7.
Appl Opt ; 51(35): 8341-9, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23262528

RESUMO

The intensity distribution of light scattered by a capillary tube filled with a liquid is studied using geometrical optics or ray tracing. Several intensity step points are found in the scattering pattern due to contributions from different geometrical rays. The scattering angles of these intensity step points vary with the capillary parameters, i.e., with the inner and outer radii of the capillary wall and the refractive indices of the liquid and the wall material. The relations between the scattering angles of the step points and the capillary parameters are analyzed using the reflection law and Snell's law. A method is developed to determine the capillary parameters from measurements of the scattering angles of the step points. An experiment is designed to provide measured data from which the capillary parameters can be obtained by the proposed method. It is shown that this method provides capillary parameters of high precision.

8.
Science ; 377(6607): 768-772, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35951710

RESUMO

Controlling interfaces of phase-separating fluid mixtures is key to the creation of diverse functional soft materials. Traditionally, this is accomplished with surface-modifying chemical agents. Using experiment and theory, we studied how mechanical activity shapes soft interfaces that separate an active and a passive fluid. Chaotic flows in the active fluid give rise to giant interfacial fluctuations and noninertial propagating active waves. At high activities, stresses disrupt interface continuity and drive droplet generation, producing an emulsion-like active state composed of finite-sized droplets. When in contact with a solid boundary, active interfaces exhibit nonequilibrium wetting transitions, in which the fluid climbs the wall against gravity. These results demonstrate the promise of mechanically driven interfaces for creating a new class of soft active matter.

9.
Phys Rev E ; 106(5-1): 054610, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36559507

RESUMO

We study the dynamics of active nematic films on a substrate driven by active flows with or without the incompressible constraint. Through simulations and theoretical analysis, we show that arch patterns are stable in the compressible case, while they become unstable under the incompressibility constraint. For compressible flows at high enough activity, stable arches organize themselves into a smecticlike pattern, which induce an associated global polar ordering of +1/2 nematic defects. By contrast, divergence-free flows give rise to a local nematic order of the +1/2 defects, consisting of antialigned pairs of neighboring defects, as established in previous studies.

10.
Sci Adv ; 7(4)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523940

RESUMO

We investigate the emergence of global alignment in colonies of dividing rod-shaped cells under confinement. Using molecular dynamics simulations and continuous modeling, we demonstrate that geometrical anisotropies in the confining environment give rise to an imbalance in the normal stresses, which, in turn, drives a collective rearrangement of the cells. This behavior crucially relies on the colony's solid-like mechanical response at short time scales and can be recovered within the framework of active hydrodynamics upon modeling bacterial colonies as growing viscoelastic gels characterized by Maxwell-like stress relaxation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA