Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8011): 311-316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720040

RESUMO

A boson sampler implements a restricted model of quantum computing. It is defined by the ability to sample from the distribution resulting from the interference of identical bosons propagating according to programmable, non-interacting dynamics1. An efficient exact classical simulation of boson sampling is not believed to exist, which has motivated ground-breaking boson sampling experiments in photonics with increasingly many photons2-12. However, it is difficult to generate and reliably evolve specific numbers of photons with low loss, and thus probabilistic techniques for postselection7 or marked changes to standard boson sampling10-12 are generally used. Here, we address the above challenges by implementing boson sampling using ultracold atoms13,14 in a two-dimensional, tunnel-coupled optical lattice. This demonstration is enabled by a previously unrealized combination of tools involving high-fidelity optical cooling and imaging of atoms in a lattice, as well as programmable control of those atoms using optical tweezers. When extended to interacting systems, our work demonstrates the core abilities required to directly assemble ground and excited states in simulations of various Hubbard models15,16.

2.
Nature ; 621(7980): 734-739, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648865

RESUMO

Neutral-atom arrays trapped in optical potentials are a powerful platform for studying quantum physics, combining precise single-particle control and detection with a range of tunable entangling interactions1-3. For example, these capabilities have been leveraged for state-of-the-art frequency metrology4,5 as well as microscopic studies of entangled many-particle states6-11. Here we combine these applications to realize spin squeezing-a widely studied operation for producing metrologically useful entanglement-in an optical atomic clock based on a programmable array of interacting optical qubits. In this demonstration of Rydberg-mediated squeezing with a neutral-atom optical clock, we generate states that have almost four decibels of metrological gain. In addition, we perform a synchronous frequency comparison between independent squeezed states and observe a fractional-frequency stability of 1.087(1) × 10-15 at one-second averaging time, which is 1.94(1) decibels below the standard quantum limit and reaches a fractional precision at the 10-17 level during a half-hour measurement. We further leverage the programmable control afforded by optical tweezer arrays to apply local phase shifts to explore spin squeezing in measurements that operate beyond the relative coherence time with the optical local oscillator. The realization of this spin-squeezing protocol in a programmable atom-array clock will enable a wide range of quantum-information-inspired techniques for optimal phase estimation and Heisenberg-limited optical atomic clocks12-16.

3.
Nature ; 588(7838): 408-413, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33328666

RESUMO

The preparation of large, low-entropy, highly coherent ensembles of identical quantum systems is fundamental for many studies in quantum metrology1, simulation2 and information3. However, the simultaneous realization of these properties remains a central challenge in quantum science across atomic and condensed-matter systems2,4-7. Here we leverage the favourable properties of tweezer-trapped alkaline-earth (strontium-88) atoms8-10, and introduce a hybrid approach to tailoring optical potentials that balances scalability, high-fidelity state preparation, site-resolved readout and preservation of atomic coherence. With this approach, we achieve trapping and optical-clock excited-state lifetimes exceeding 40 seconds in ensembles of approximately 150 atoms. This leads to half-minute-scale atomic coherence on an optical-clock transition, corresponding to quality factors well in excess of 1016. These coherence times and atom numbers reduce the effect of quantum projection noise to a level that is comparable with that of leading atomic systems, which use optical lattices to interrogate many thousands of atoms in parallel11,12. The result is a relative fractional frequency stability of 5.2(3) × 10-17τ-1/2 (where τ is the averaging time in seconds) for synchronous clock comparisons between sub-ensembles within the tweezer array. When further combined with the microscopic control and readout that are available in this system, these results pave the way towards long-lived engineered entanglement on an optical-clock transition13 in tailored atom arrays.

4.
Int J Mol Sci ; 15(4): 6062-71, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24727374

RESUMO

L-arginine metabolism including the nitric oxide (NO) synthase and arginase pathways is important in the maintenance of airways function. We have previously reported that accumulation of asymmetric dimethylarginine (ADMA) in airways, resulting in changes in L-arginine metabolism, contributes to airways obstruction in asthma and cystic fibrosis. Herein, we assessed L-arginine metabolism in airways of patients with chronic obstructive pulmonary disease (COPD). Lung function testing, measurement of fractional exhaled NO (FeNO) and sputum NO metabolites, as well as quantification of L-arginine metabolites (L-arginine, L-ornithine, L-citrulline, ADMA and symmetric dimethylarginine) using liquid chromatography-mass spectrometry (LC-MS) were performed. Concentrations of L-ornithine, the product of arginase activity, correlated directly with L-arginine and ADMA sputum concentrations. FeNO correlated directly with pre- and post-bronchodilator forced expiratory volume in one second (FEV1). Sputum arginase activity correlated inversely with total NO metabolite (NOx) and nitrite concentrations in sputum, and with pre- and post-bronchodilator FEV1. These findings suggest that ADMA in COPD airways results in a functionally relevant shift of L-arginine breakdown by the NO synthases towards the arginase pathway, which contributes to airway obstruction in these patients.


Assuntos
Arginina/análogos & derivados , Arginina/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Espectrometria de Massas em Tandem , Idoso , Arginase/metabolismo , Arginina/análise , Cromatografia Líquida de Alta Pressão , Feminino , Volume Expiratório Forçado , Humanos , Pulmão/fisiologia , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Ornitina/análise , Doença Pulmonar Obstrutiva Crônica/patologia , Escarro/enzimologia
5.
Science ; 377(6608): 885-889, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35981010

RESUMO

Quantum walks provide a framework for designing quantum algorithms that is both intuitive and universal. To leverage the computational power of these walks, it is important to be able to programmably modify the graph a walker traverses while maintaining coherence. We do this by combining the fast, programmable control provided by optical tweezers with the scalable, homogeneous environment of an optical lattice. With these tools we study continuous-time quantum walks of single atoms on a square lattice and perform proof-of-principle demonstrations of spatial search with these walks. When scaled to more particles, the capabilities demonstrated can be extended to study a variety of problems in quantum information science, including performing more effective versions of spatial search using a larger graph with increased connectivity.

6.
Rev Sci Instrum ; 92(9): 093001, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598487

RESUMO

We present a continuous-wave, 810 nm laser with watt-level powers. Our system is based on difference-frequency generation of 532 and 1550 nm fiber lasers in a single pass through periodically poled lithium niobate. We measure the broadband spectral noise and relative intensity noise to be compatible with off-resonant dipole trapping of ultracold atoms. Given the large bandwidth of the fiber amplifiers, the output can be optimized for a range of wavelengths, including the strontium clock-magic-wavelength of 813 nm. Furthermore, with the exploration of more appropriate nonlinear crystals, we believe that there is a path toward scaling this proof-of-principle design to many watts of power and that this approach could provide a robust, rack-mountable trapping laser for future use in strontium-based optical clocks.

7.
Science ; 366(6461): 93-97, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31515245

RESUMO

Coherent control of high-quality factor optical transitions in atoms has revolutionized precision frequency metrology. Leading optical atomic clocks rely on the interrogation of such transitions in either single ions or ensembles of neutral atoms to stabilize a laser frequency at high precision and accuracy. We demonstrate a platform that combines the key strengths of these two approaches, based on arrays of individual strontium atoms held within optical tweezers. We report coherence times of 3.4 seconds, single-ensemble duty cycles up to 96% through repeated interrogation, and frequency stability of 4.7 × 10-16 (τ/s)-1/2 These results establish optical tweezer arrays as a powerful tool for coherent control of optical transitions for metrology and quantum information science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA