Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Pharmacol Res ; 146: 104324, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31238093

RESUMO

Intranasal delivery of oxytocin (Oxt) has been identified as a potential therapeutic to target human conditions characterized by social deficits, yet the ability of this administrative route to deliver to the brain is unconfirmed. Oxt knockout (Oxt KO) and wildtype C57BL/6 J male mice received Oxt (12 µg total amount) either by nasal or intraperitoneal administration. Oxt concentrations were monitored for 2 h after administration in circulation via a jugular vein catheter and in the brain by two intracerebral microdialysis probes. Group sizes varied from 4 to 7 mice (n = 22 total). We document for the first time that Oxt applied to the nasal mucosa after nasal administration is delivered to the extracellular fluid in the brain. After nasal application, Oxt concentrations in circulation and in the extracellular fluid of the amygdala and, to an extent, the dorsal hippocampus, rose within the first 30 min and remained elevated for the subsequent hour. These findings were confirmed in an Oxt KO mouse line, establishing that the circulating and brain Oxt elevations derive from the administered dose. Interestingly, the pharmacokinetics of Oxt were slightly biased to the brain after nasal administration and to the periphery following intraperitoneal injection. No change in vasopressin levels was detected. These findings have stimulating implications for the interpretation of various behavioral and physiological effects described in animal and human studies after nasal administration of Oxt and provide the pharmacokinetics necessary to develop this drug delivery route for therapeutic purposes.


Assuntos
Tonsila do Cerebelo/metabolismo , Hipocampo/metabolismo , Ocitocina/administração & dosagem , Administração Intranasal , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Injeções Intraperitoneais/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microdiálise/métodos , Ocitocina/sangue , Ocitocina/metabolismo , Vasopressinas/sangue , Vasopressinas/metabolismo
3.
bioRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38883723

RESUMO

The arginine vasopressin 1b receptor (Avpr1b) plays an important role in social behaviors including social learning, memory, and aggression, and is known to be a specific marker for the cornu ammonis area 2 (CA2) regions of the hippocampus. The fasciola cinereum (FC) is an anatomical region in which Avpr1b expressing neurons are prominent, but the functional roles of the FC have yet to be investigated. Surprisingly, the FC is absent in the inbred BTBR T+tf/J (BTBR) mouse strain used to study core behavioral deficits of autism. Here, we characterized and compared transcriptomic expression profiles using single nucleus RNA sequencing and identified 7 different subpopulations and heterogeneity within the dorsal CA2 (dCA2) and FC. Mef2c, involved in autism spectrum disorder, is more highly expressed in the FC. Using Hiplex in situ hybridization, we examined the neuroanatomical locations of these subpopulations in the proximal and distal regions of the hippocampus. Anterograde tracing of Avpr1b neurons specific for the FC showed projections to the IG, dCA2, lacunosum molecular layer of CA1, dorsal fornix, septofibrial nuclei, and intermediate lateral septum (iLS). In contrast to the dCA2, inhibition of Avpr1b neurons in the FC by the inhibitory DREADD system during behavioral testing did not impair social memory. We performed single nucleus RNA sequencing in the dCA2 region and compared between wildtype (WT) and BTBR mice. We found that transcriptomic profiles of dCA2 neurons between BTBR and WT mice are very similar as they did not form any unique clusters; yet, we found there were differentially expressed genes between the dCA2s of BTBR and WT mice. Overall, this is a comprehensive study of the comparison of Avpr1b neuronal subpopulations between the FC and dCA2. The fact that FC is absent in BTBR mice, a mouse model for autism spectrum disorder, suggests that the FC may play a role in understanding neuropsychiatric disease.

4.
J Biol Chem ; 287(34): 29159-67, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22761429

RESUMO

Estrogen uses two mechanisms to exert its effect on the skeleton: it inhibits bone resorption by osteoclasts and, at higher doses, can stimulate bone formation. Although the antiresorptive action of estrogen arises from the inhibition of the MAPK JNK, the mechanism of its effect on the osteoblast remains unclear. Here, we report that the anabolic action of estrogen in mice occurs, at least in part, through oxytocin (OT) produced by osteoblasts in bone marrow. We show that the absence of OT receptors (OTRs) in OTR(-/-) osteoblasts or attenuation of OTR expression in silenced cells inhibits estrogen-induced osteoblast differentiation, transcription factor up-regulation, and/or OT production in vitro. In vivo, OTR(-/-) mice, known to have a bone formation defect, fail to display increases in trabecular bone volume, cortical thickness, and bone formation in response to estrogen. Furthermore, osteoblast-specific Col2.3-Cre(+)/OTR(fl/fl) mice, but not TRAP-Cre(+)/OTR(fl/fl) mice, mimic the OTR(-/-) phenotype and also fail to respond to estrogen. These data attribute the phenotype of OTR deficiency to an osteoblastic rather than an osteoclastic defect. Physiologically, feed-forward OT release in bone marrow by a rising estrogen concentration may facilitate rapid skeletal recovery during the latter phases of lactation.


Assuntos
Osso e Ossos/metabolismo , Estrogênios/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Osteogênese/fisiologia , Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Animais , Osso e Ossos/citologia , Feminino , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Lactação/fisiologia , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Ocitocina/genética , Receptores de Ocitocina/genética
5.
J Neurochem ; 126(3): 331-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23682839

RESUMO

Oxytocin (Oxt), produced in the hypothalamic paraventricular and supraoptic nuclei for transport to and release from the posterior pituitary, was originally discovered through its role in lactation and parturition. Oxt also plays important roles in the central nervous system by influencing various behaviors. MicroRNAs (miRNAs), endogenous regulators of many genes, are a class of small non-coding RNAs that mediate post-transcriptional gene silencing. We performed miRNA expression profiling of the mouse hypothalamus by deep sequencing. Among the sequenced and cross-mapped small RNAs, expression of known miRNAs and unknown miRNAs candidates were analyzed. We investigated in detail one miRNA, miR-24, and found that it is a novel regulator of Oxt and controls both transcript and peptide levels of Oxt. These results provide insights into potential neurohypophysial hormone regulation mediated by miRNAs.


Assuntos
Hipotálamo/metabolismo , MicroRNAs/genética , Ocitocina/biossíntese , Interferência de RNA/fisiologia , Animais , Ensaio de Imunoadsorção Enzimática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Ocitocina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma
6.
bioRxiv ; 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36789441

RESUMO

Oxytocin (Oxt) and vasopressin (Avp) are two neuropeptides with many central actions related to social cognition. The oxytocin (Oxtr) and vasopressin 1b (Avpr1b) receptors are co-expressed in the pyramidal neurons of the hippocampal subfield CA2 and are known to play a critical role in social memory formation. How the neuropeptides perform this function in this region is not fully understood. Here, we report the behavioral effects of a life-long conditional removal (knockout, KO) of either the Oxtr alone or both Avpr1b and Oxtr from the pyramidal neurons of CA2 as well as the resultant changes in synaptic transmission within the different fields of the hippocampus. Surprisingly, the removal of both receptors results in mice that are unable to habituate to a familiar female presented for short duration over short intervals but are able to recognize and discriminate females when presented for a longer duration over a longer interval. Importantly, these double KO mice were unable to discriminate between a male littermate and a novel male. Synaptic transmission between CA3 and CA2 is enhanced in these mice, suggesting a compensatory mechanism is activated to make up for the loss of the receptors. Overall, our results demonstrate that co-expression of the receptors in CA2 is necessary to allow intact social memory processing.

7.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693526

RESUMO

The cornu ammonis area 2 (CA2) region is essential for social behaviors, especially in social aggression and social memory. Recently, we showed that targeted CA2 stimulation of vasopressin presynaptic fibers from the paraventricular nuclei of hypothalamus strongly enhances social memory in mice. In addition, the CA2 area of the mouse hippocampus receives neuronal inputs from other regions including the septal nuclei, the diagonal bands of Broca, supramammillary nuclei, and median raphe nucleus. However, the functions of these projections have been scarcely investigated. A functional role of median raphe (MR) - CA2 projection is supported by the MR to CA2 projections and 82% reduction of hippocampal serotonin (5-HT) levels following MR lesions. Thus, we investigated the behavioral role of presynaptic fibers from the median raphe nucleus projecting to the dorsal CA2 (dCA2). Here, we demonstrate the optogenetic stimulation of 5-HT projections to dCA2 from the MR do not alter social memory, but instead reduce social interaction. We show that optical stimulation of MR fibers excites interneurons in the stratum radiatum (SR) and stratum lacunosum moleculare (SLM) of CA2 region. Consistent with these observations, we show that bath application of 5-HT increases spontaneous GABA release onto CA2 pyramidal neurons and excites presumed interneurons located in the SR/SLM. This is the first study, to our knowledge, which investigates the direct effect of 5-HT release from terminals onto dCA2 neurons on social behaviors. This highlights the different roles for these inputs (i.e., vasopressin inputs regulating social memory versus serotonin inputs regulating social interaction).

8.
Int J Neuropsychopharmacol ; 15(8): 1135-48, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21906419

RESUMO

Research suggests that dysfunctional glutamatergic signalling may contribute to depression, a debilitating mood disorder affecting millions of individuals worldwide. Ketamine, a N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects in approximately 70% of patients. Glutamate evokes the release of D-serine from astrocytes and neurons, which then acts as a co-agonist and binds at the glycine site on the NR1 subunit of NMDA receptors. Several studies have implicated glial deficits as one of the underlying facets of the neurobiology of depression. The present study tested the hypothesis that D-serine modulates behaviours related to depression. The behavioural effects of a single, acute D-serine administration were examined in several rodent tests of antidepressant-like effects, including the forced swim test (FST), the female urine sniffing test (FUST) following serotonin depletion, and the learned helplessness (LH) paradigm. D-serine significantly reduced immobility in the FST without affecting general motor function. Both D-serine and ketamine significantly rescued sexual reward-seeking deficits caused by serotonin depletion in the FUST. Finally, D-serine reversed LH behaviour, as measured by escape latency, number of escapes, and percentage of mice developing LH. Mice lacking NR1 expression in forebrain excitatory neurons exhibited a depression-like phenotype in the same behavioural tests, and did not respond to D-serine treatment. These findings suggest that D-serine produces antidepressant-like effects and support the notion of complex glutamatergic dysfunction in depression. It is unclear whether D-serine has a convergent influence on downstream synaptic plasticity cascades that may yield a similar therapeutic profile to NMDA antagonists like ketamine.


Assuntos
Antidepressivos/administração & dosagem , Depressão/tratamento farmacológico , Depressão/fisiopatologia , Serina/administração & dosagem , Análise de Variância , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Reação de Fuga/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Feminino , Desamparo Aprendido , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Resposta de Imobilidade Tônica/efeitos dos fármacos , Ketamina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Fenilenodiaminas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos WKY , Receptores de N-Metil-D-Aspartato/deficiência , Receptores de N-Metil-D-Aspartato/genética , Natação
9.
Horm Behav ; 61(3): 436-44, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22100185

RESUMO

A wealth of studies has implicated oxytocin (Oxt) and its receptors (Oxtr) in the mediation of social behaviors and social memory in rodents. It has been suggested that failures in this system contribute to deficits in social interaction that characterize autism spectrum disorders (ASD). In the current analyses, we investigated the expression of autism-related behaviors in mice that lack the ability to synthesize the oxytocin receptor itself, Oxtr knockout (KO) mice, as compared to their wild-type (WT) littermates. In the visible burrow system, Oxtr KO mice showed robust reductions in frontal approach, huddling, allo-grooming, and flight, with more time spent alone, and in self-grooming, as compared to WT. These results were corroborated in the three-chambered test: unlike WT, Oxtr KO mice failed to spend more time in the side of the test box containing an unfamiliar CD-1 mouse. In the social proximity test, Oxtr KO mice showed clear reductions in nose to nose and anogenital sniff behaviors oriented to an unfamiliar C57BL/6J (B6) mouse. In addition, our study revealed no differences between Oxtr WT and KO genotypes in the occurrence of motor and cognitive stereotyped behaviors. A significant genotype effect was found in the scent marking analysis, with Oxtr KO mice showing a decreased number of scent marks, as compared to WT. Overall, the present data indicate that the profile for Oxtr KO mice, including consistent social deficits, and reduced levels of communication, models multiple components of the ASD phenotype. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/psicologia , Receptores de Ocitocina/genética , Receptores de Ocitocina/fisiologia , Análise de Variância , Comunicação Animal , Animais , Feminino , Genótipo , Asseio Animal , Individualidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Comportamento Social , Comportamento Estereotipado , Urina/fisiologia
10.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35017259

RESUMO

Oxytocin (Oxt) controls reproductive physiology and various kinds of social behaviors, but the exact contribution of Oxt to different components of parental care still needs to be determined. Here, we illustrate the neuroanatomical relations of the parental nurturing-induced neuronal activation with magnocellular Oxt neurons and fibers in the medial preoptic area (MPOA), the brain region critical for parental and alloparental behaviors. We used genetically-targeted mouse lines for Oxt, Oxt receptor (Oxtr), vasopressin receptor 1a (Avpr1a), vasopressin receptor 1b (Avpr1b), and thyrotropin-releasing hormone (Trh) to systematically examine the role of Oxt-related signaling in pup-directed behaviors. The Oxtr-Avpr1a-Avpr1b triple knock-out (TKO), and Oxt-Trh-Avpr1a-Avpr1b quadruple KO (QKO) mice were grossly healthy and fertile, except for their complete deficiency in milk ejection and modest deficiency in parturition secondary to maternal loss of the Oxt or Oxtr gene. In our minimal stress conditions, pup-directed behaviors in TKO and QKO mothers and fathers, virgin females and males were essentially indistinguishable from those of their littermates with other genotypes. However, Oxtr KO virgin females did show decreased pup retrieval in the pup-exposure assay performed right after restraint stress. This stress vulnerability in the Oxtr KO was abolished by the additional Avpr1b KO. The general stress sensitivity, as measured by plasma cortisol elevation after restraint stress or by the behavioral performance in the open field (OF) and elevated plus maze (EPM), were not altered in the Oxtr KO but were reduced in the Avpr1b KO females, indicating that the balance of neurohypophysial hormones affects the outcome of pup-directed behaviors.


Assuntos
Ocitocina , Receptores de Ocitocina , Animais , Feminino , Masculino , Camundongos , Neurônios , Parto , Gravidez , Receptores de Ocitocina/genética , Comportamento Social
11.
Nat Neurosci ; 24(4): 529-541, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33589833

RESUMO

Oxytocin (OT) orchestrates social and emotional behaviors through modulation of neural circuits. In the central amygdala, the release of OT modulates inhibitory circuits and, thereby, suppresses fear responses and decreases anxiety levels. Using astrocyte-specific gain and loss of function and pharmacological approaches, we demonstrate that a morphologically distinct subpopulation of astrocytes expresses OT receptors and mediates anxiolytic and positive reinforcement effects of OT in the central amygdala of mice and rats. The involvement of astrocytes in OT signaling challenges the long-held dogma that OT acts exclusively on neurons and highlights astrocytes as essential components for modulation of emotional states under normal and chronic pain conditions.


Assuntos
Astrócitos/metabolismo , Núcleo Central da Amígdala/metabolismo , Emoções/fisiologia , Neurônios/metabolismo , Ocitocina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Núcleo Central da Amígdala/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocitocina/farmacologia , Ratos , Ratos Wistar , Receptores de Ocitocina/metabolismo
12.
J Neurosci ; 29(9): 2676-83, 2009 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-19261862

RESUMO

Mice lacking a functional vasopressin 1b receptor (Avpr1b) display decreased levels of aggression and social memory. Here, we used Avpr1b-knock-out (Avpr1b(-/-)) mice to examine whether an abnormality of this receptor results in specific cognitive deficits in the domain of hippocampal function. Avpr1b(-/-) mice were deficient in sociability and in detecting social novelty, extending previous findings of impairment in social recognition in these mutants. Avpr1b(-/-) mice could recognize previously explored objects and remember where they were experienced, but they were impaired in remembering the temporal order of presentation of those objects. Consistent with this finding, Avpr1b(-/-) mice were also impaired on an object-odor paired associate task that involved a temporal discontiguity between the associated elements. Finally, Avpr1b(-/-) mice performed normally in learning a set of overlapping odor discriminations and could infer relationships among odors that were only indirectly associated (i.e., transitive inference), indicating intact relational memory. The Avpr1b is expressed at much higher levels than any other part of the brain in the pyramidal cells of hippocampal CA2 area, a subfield of the hippocampus that has physiological and genetic properties that distinguish it from subfields CA1 and CA3. The combined results suggest that the Avpr1b, perhaps in CA2, may play a highly specific role in social behavior and episodic memory. Because schizophrenia and bipolar disorder are associated with a unique pathology in CA2 and impairments in both social behavior and episodic memory, this animal model could provide insights into the etiology of these disorders.


Assuntos
Transtornos da Memória/genética , Transtornos da Memória/psicologia , Receptores de Vasopressinas/genética , Reconhecimento Psicológico/fisiologia , Percepção Social , Animais , Aprendizagem por Associação , Condicionamento Operante/fisiologia , Discriminação Psicológica/fisiologia , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Odorantes , Células Piramidais/fisiologia
13.
Horm Behav ; 58(2): 257-63, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20298692

RESUMO

We have previously reported that mice with a targeted disruption of their vasopressin 1b receptor gene, Avpr1b, have mild impairments in social recognition and reduced aggression. The reductions in aggression are limited to social forms of aggression, i.e., maternal and inter-male aggression, while predatory aggression remains unaffected. To further clarify the role of the Avpr1b in the regulation of social behavior we first examined anxiety-like and depression-like behaviors in Avpr1b knockout (Avpr1b -/-) mice. We then went on to test the ability of Avpr1b -/- mice to form dominance hierarchies. No major differences were found between Avpr1b -/- and wildtype mice in anxiety-like behaviors, as measured using an elevated plus maze and an open field test, or depression-like behaviors, as measured using a forced swim test. In the social dominance study we found that Avpr1b -/- mice are able to form dominance hierarchies, though in early hierarchy formation dominant Avpr1b -/- mice display significantly more mounting behavior on Day 1 of testing compared to wildtype controls. Further, non-socially dominant Avpr1b -/- mice spend less time engaged in attack behavior than wildtype controls. These findings suggest that while Avpr1b -/- mice may be able to form dominance hierarchies they appear to employ alternate strategies.


Assuntos
Receptores de Vasopressinas/metabolismo , Predomínio Social , Animais , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Depressão/metabolismo , Dominação-Subordinação , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Testes Neuropsicológicos , Receptores de Vasopressinas/genética , Comportamento Social , Natação , Fatores de Tempo
14.
Prog Neurobiol ; 84(1): 1-24, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18053631

RESUMO

Vasopressin (Avp) is mainly synthesized in the magnocellular cells of the hypothalamic supraoptic (SON) and paraventricular nuclei (PVN) whose axons project to the posterior pituitary. Avp is then released into the blood stream upon appropriate stimulation (e.g., hemorrhage or dehydration) to act at the kidneys and blood vessels. The brain also contains several populations of smaller, parvocellular neurons whose projections remain within the brain. These populations are located within the PVN, bed nucleus of the stria terminalis (BNST), medial amygdala (MeA) and suprachiasmatic nucleus (SCN). Since the 1950s, research examining the roles of Avp in the brain and periphery has intensified. The development of specific agonists and antagonists for Avp receptors has allowed for a better elucidation of its contributions to physiology and behavior. Anatomical, pharmacological and transgenic, including "knockout," animal studies have implicated Avp in the regulation of various social behaviors across species. Avp plays a prominent role in the regulation of aggression, generally of facilitating or promoting it. Affiliation and certain aspects of pair-bonding are also influenced by Avp. Memory, one of the first brain functions of Avp that was investigated, has been implicated especially strongly in social recognition. The roles of Avp in stress, anxiety, and depressive states are areas of active exploration. In this review, we concentrate on the scientific progress that has been made in understanding the role of Avp in regulating these and other behaviors across species. We also discuss the implications for human behavior.


Assuntos
Encéfalo/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Receptores de Vasopressinas/metabolismo , Vasopressinas/metabolismo , Agressão/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo/anatomia & histologia , Humanos , Sistema Hipotálamo-Hipofisário/anatomia & histologia , Memória/fisiologia , Receptores de Vasopressinas/efeitos dos fármacos , Comportamento Social , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Vasopressinas/química , Vasopressinas/genética
15.
Front Mol Neurosci ; 13: 40, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256314

RESUMO

Oxytocin, acting through the oxytocin receptor (Oxtr) in the periphery, is best known for its roles in regulating parturition and lactation. However, it is also now known to possess a number of important social functions within the central nervous system, including social preference, memory and aggression, that vary to different degrees in different species. The Oxtr is found in both excitatory and inhibitory neurons within the brain and research is focusing on how, for example, activation of the receptor in interneurons can enhance the signal-to-noise of neuronal transmission. It is important to understand which neurons in the mouse dorsal hippocampus might be activated during memory formation. Therefore, we examined the colocalization of transcripts in over 5,000 neurons for Oxtr with those for nine different markers often found in interneurons using hairpin chain reaction in situ hybridization on hippocampal sections. Most pyramidal cell neurons of CA2 and many in the CA3 express Oxtr. Outside of those excitatory neurons, over 90% of Oxtr-expressing neurons co-express glutamic acid decarboxylase-1 (Gad-1) with progressively decreasing numbers of co-expressing cholecystokinin, somatostatin, parvalbumin, neuronal nitric oxide synthase, the serotonin 3a receptor, the vesicular glutamate transporter 3, calbindin 2 (calretinin), and vasoactive intestinal polypeptide neurons. Distributions were analyzed within hippocampal layers and regions as well. These findings indicate that Oxtr activation will modulate the activity of ~30% of the Gad-1 interneurons and the majority of the diverse population of those, mostly, interneuron types specifically examined in the mouse hippocampus.

16.
Front Mol Neurosci ; 13: 61, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390799

RESUMO

Social recognition is fundamental for social decision making and the establishment of long-lasting affiliative behaviors in behaviorally complex social groups. It is a critical step in establishing a selective preference for a social partner or group member. C57BL/6J lab mice do not form monogamous relationships, and typically do not show prolonged social preferences for familiar mice. The CA2 hippocampal subfield plays a crucial role in social memory and optogenetic stimulation of inputs to the dorsal CA2 field during a short memory acquisition period can enhance and extend social memories in mice. Here, we show that partner preference in mice can be induced by chemogenetic selective stimulation of the monosynaptic projections from the hypothalamic paraventricular nucleus (PVN) to the CA2 during the cohabitation period. Specifically, male mice spend more time in social contact, grooming and huddling with the partner compared to a novel female. Preference was not induced by prolonging the cohabitation period and allowing more time for social interactions and males to sire pups with the familiar female. These results suggest that PVN-to-CA2 projections are part of an evolutionarily conserved neural circuitry underlying the formation of social preference and may promote behavioral changes with appropriate stimulation.

17.
Physiol Behav ; 97(1): 131-4, 2009 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-19419666

RESUMO

It has been previously reported that vasopressin 1b receptor knockout (Avpr1b(-/-)) mice have reduced levels of aggressive behavior compared to wildtype littermates. However, as the background of the mice was always a mixture of 129/SvJ and C57BL/6, we wanted to determine if the phenotype persisted when our laboratory line was crossed with a wild-derived sub-species of house mice. To this end, we crossed our Avpr1b(-/-) mice with Mus musculus castaneus, one of the few sub-species that will breed with laboratory strains. Subsequent F(2) offspring were tested in a resident-intruder behavioral test to assess aggressive behavior. We found that even on this more "wild" background, Avpr1b(-/-) mice continued to demonstrate longer attack latencies and fewer attacks in a resident-intruder test than wildtype littermates. These findings are consistent with previous reports of reduced aggressive behavior in Avpr1b(-/-) mice and show that the deficit does persist on a different background strain. Further, these findings confirm the importance of the Avpr1b to normal displays of social forms of aggressive behavior.


Assuntos
Agressão/fisiologia , Arginina Vasopressina/genética , Camundongos Endogâmicos/psicologia , Camundongos Knockout/psicologia , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/fisiologia , Animais , Feminino , Hibridização Genética , Masculino , Camundongos , Camundongos Endogâmicos/metabolismo , Camundongos Knockout/metabolismo , Receptores de Vasopressinas/metabolismo
18.
Genes Brain Behav ; 18(1): e12535, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30378258

RESUMO

The role of the hippocampus in social memory and behavior is under intense investigation. Oxytocin (Oxt) and vasopressin (Avp) are two neuropeptides with many central actions related to social cognition. Oxt- and Avp-expressing fibers are abundant in the hippocampus and receptors for both peptides are seen throughout the different subfields, suggesting that Oxt and Avp modulate hippocampal-dependent processes. In this review, we first focus on the anatomical sources of Oxt and Avp input to the hippocampus and consider the distribution of their corresponding receptors in different hippocampal subfields and neuronal populations. We next discuss the behavioral outcomes related to social memory seen with perturbation of hippocampal Oxt and Avp signaling. Finally, we review Oxt and Avp modulatory mechanisms in the hippocampus that may underlie the behavioral roles for both peptides.


Assuntos
Hipocampo/metabolismo , Ocitocina/metabolismo , Aprendizado Social , Vasopressinas/metabolismo , Animais , Hipocampo/fisiologia , Roedores
19.
Front Behav Neurosci ; 13: 218, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787886

RESUMO

The arginine vasopressin 1b receptor (Avpr1b) plays an important role in social behaviors including aggression, social learning and memory. Genetic removal of Avpr1b from mouse models results in deficits in aggression and short-term social recognition in adults. Avpr1b gene expression is highly enriched in the pyramidal neurons of the hippocampal cornu ammonis 2 (CA2) region. Activity of the hippocampal CA2 has been shown to be required for normal short-term social recognition and aggressive behaviors. Vasopressin acts to enhance synaptic responses of CA2 neurons through a NMDA-receptor dependent mechanism. Genetic removal of the obligatory subunit of the NMDA receptor (Grin1) within distinct hippocampal regions impairs non-social learning and memory. However, the question of a direct role for NMDA receptor activity in Avpr1b neurons to modulate social behavior remains unclear. To answer this question, we first created a novel transgenic mouse line with Cre recombinase knocked into the Avpr1b coding region to genetically target Avpr1b neurons. We confirmed this line has dense Cre expression throughout the dorsal and ventral CA2 regions of the hippocampus, along with scattered expression within the caudate-putamen and olfactory bulb (OB). Conditional removal of the NMDA receptor was achieved by crossing our line to an available floxed Grin1 line. The resulting mice were measured on a battery of social and memory behavioral tests. Surprisingly, we did not observe any differences between Avpr1b-Grin1 knockout mice and their wildtype siblings. We conclude that mice without typical NMDA receptor function in Avpr1b neurons can develop normal aggression as well as short-term social and object memory performance.

20.
Endocrinology ; 149(1): 116-21, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17947352

RESUMO

The Bruce effect is a pheromonally mediated process whereby exposure to chemosensory cues from an unfamiliar male terminates pregnancy in a recently mated female. Pharmacological and genetic evidence implicates both oxytocin (Oxt) and vasopressin (Avp) in the regulation of social memory in males, but less work has been done in females. We tested the extent to which the Avp receptors (Avprs) 1a and 1b and Oxt are essential for the Bruce effect, a phenomenon that relies on olfactory memory. Adult female mice were paired with stimulus males and monitored for the presence of sperm plugs. Wild-type, heterozygous, and homozygous knockout (KO) females for either the Avpr1a, Avpr1b, or Oxt genes were randomly assigned to one of the following treatment groups: 1) alone (mate removed, no second exposure to another animal); 2) paired continuously (mate kept with female for 10-14 d); 3) familiar male (mate removed, reintroduced 24 h later); or 4) unfamiliar male (mate removed, BalbC male introduced 24 h later). Regardless of genotype, 90-100% of females in the alone or paired continuously groups became pregnant. The Oxt KO females terminated their pregnancies regardless of whether their original mate or an unfamiliar male was reintroduced. The Avpr1b KO mice failed to terminate pregnancy in the presence of an unfamiliar male. The Avpr1a KO mice exhibited a normal Bruce effect. These data demonstrate that both Oxt and the Avpr1b are critical for the normal expression of the Bruce effect but have different effects on the interpretation of social cues.


Assuntos
Comunicação Animal , Perda do Embrião/etiologia , Ocitocina/genética , Prenhez , Receptores de Vasopressinas/genética , Animais , Animais de Laboratório , Perda do Embrião/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Comportamento Social , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA