Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 249: 118344, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311200

RESUMO

More and more previously designed wastewater treatment plants (WWTPs) are upgraded to tertiary treatment to meet the higher effluent discharge standards of conventional pollutants. Contaminants of emerging concern (CECs) can cause adverse effects on organisms and usually flow into WWTPs along with urban sewage. How the retrofitted WWTPs targeting conventional pollutants will influence the treatment efficiency of CECs is seldom discussed. This study investigates the removal of CECs in two full-scale newly retrofitted WWTPs (CD and JM WWTPs), containing high-efficiency sedimentation tank and denitrification deep bed filter for enhancing total nitrogen removal. The overall CEC removal efficiencies in the CD and JM WWTPs were 73.79 % and 93.63 %, respectively. Mass balance results indicated that CD WWTP and JM WWTP release a total of 36.89 and 88.58 g/d of CECs into the environment through effluent and excess sludge, respectively. Analysis of the concentration of CECs along the treatment process revealed most CECs were removed in the biological treatment units. The incorporation of newly constructed tertiary treatment proved beneficial for CEC removal and removed 2.93 % and 2.36 % CECs, corresponding to CEC removal of 2.92 and 27.49 g/d in the CD and JM WWTPs, respectively. The data of this study were further used to evaluate the suitability of the SimpleTreat model for simulating the fate of CECs in WWTPs. The predicted fraction of CECs discharged through the biological treatment effluent were generally within ten-fold difference from the measured results, highlighting its potential for estimating CEC removal in WWTPs.


Assuntos
Nitrogênio , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Nitrogênio/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Águas Residuárias/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-36790415

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) have been recognized as a potential health risk and are widespread in nature due to their intrinsic chemical stability and high recalcitrance to degradation. A taxonomic study was carried out on strain P9T, which was isolated from a PAH-degrading consortium, enriched from the mangrove sediment from Zhangzhou, PR China. The isolate was chemoheterotrophic, aerobic, Gram-stain-negative, short-rod shaped, and motile by one polar flagellum. Growth was observed at salinities from 0.5-6.0 % (optimum, 3 %), at pH 4-9 (optimum, pH 7) and at 10-41 °C (optimum, 25-30 °C). It did not synthesize bacteriochlorophyll a. Catalase and oxidase activities were positive. Acid was produced from starch, amygdalin, arbutin, cellobiose, d-fructose, maltose, d-mannitol, melezitose, melibiose, raffinose, d-ribose, sucrose, trehalose, d-xylose, aesculin ferric citrate, gentiobiose, glycogen, l-arabinose, l-rhamnose, methyl α-d-glucopyranoside, methyl ß-d-xylopyranoside, N-acetylglucosamine and salicin, and weakly positive for d-arabitol, d-galactose, lactose, turanose and glycerol. Phylogenetic analysis revealed that strain P9T fell within the clade comprising the type strains of Salipiger species and formed an independent cluster with Salipiger profundus, which was distinct from other members of the family Rhodobacteraceae. The 16S rRNA gene sequence comparisons showed that strain P9T was most closely related to Salipiger bermudensis HTCC 260T (96.7 %), and other species of the genus Salipiger (95.7-94.2 %). Strain P9T had the highest digital DNA-DNA hybridization value with S. profundus CGMCC 1.12377T (25.0 %) and the highest average nucleotide identity (ANIb and ANIm) values with S. profundus CGMCC 1.12377T(80.3 and 85.8 %, respectively). The sole respiratory quinone was quinone 10. The dominant fatty acids were C18 : 1 ω7c (61.4 %), C16 : 0 (17.5 %) and C19 : 0 ω8c cyclo (7.6 %). The G+C content of the chromosomal DNA was 65.8 mol%. In the polar lipid profile, phospholipid, phosphatidylglycerol, aminolipid, glycolipid and phosphatidylethanolamine were the major compounds. Based on the phenotypic and phylogenetic data, strain P9T represents a novel species of the genus Salipiger, for which the name Salipiger pentaromativorans sp. nov. is proposed. The type strain is P9T (=CCTCC AB 209290T=LMG 25701T=MCCC 1F01055T).


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Rhodobacteraceae , Ácidos Graxos/química , Água do Mar/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Composição de Bases , Análise de Sequência de DNA , Fosfolipídeos/química , Quinonas
3.
Environ Sci Technol ; 57(30): 11267-11278, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37477285

RESUMO

The widespread occurrence of tire tread particles (TPs) has aroused increasing concerns over their impacts. However, how they affect the soil fauna remains poorly understood. Here, based on systematically assessing the toxicity of TPs on soil model speciesEnchytraeus crypticusat environmentally relevant concentrations through both soil and food exposure routes, we reported that TPs affected gut microbiota, intestinal histopathology, and metabolites of the worms both through particulate- and leachate-induced effects, while TP leachates exerted stronger effects. The dominant role of TP leachates in TP toxicity was further explained by the findings that worms did not ingest TPs with a particle size of over 150 µm and actively avoided consuming TP particles. Moreover, by comparing the effects of different brands of TPs as well as new and aged TPs, we demonstrated that it was mainly TP leachates that resulted in the ubiquity of the disturbance in the worm's gut microbiota among different brands of TPs. Notably, the large variations in leachate compositions among different brands of TPs provided us a unique opportunity to identify the determinants of TP toxicity. These results provide novel insights into the toxicity of TPs to soil fauna and a reference for toxicity reduction of tires.


Assuntos
Microbioma Gastrointestinal , Poeira , Tamanho da Partícula , Solo
4.
J Environ Manage ; 341: 117986, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172350

RESUMO

Increased urbanization and anthropogenic activities can alter dissolved organic matter (DOM) and complicate its interaction with bacteria in rivers' ecosystems, however, there is limited information about how bacterial communities respond to DOM components in rivers with different urbanization levels. Here, we combined spectroscopy-based DOM analysis and 16S rRNA gene amplicon sequencing to investigate the associations of bacterial taxa and DOM properties as well as the impacts of DOM on bacterial niche breadth in North River (NR) and West River (WR) of Jiulong River watershed, southern China, which had low and high urbanization levels, respectively. Spectroscopy analysis showed that hydrophilic DOM was predominant in both rivers whereas chromophoric DOM was higher in WR. Network analysis indicated that only seven bacterial genera (i.e., hg clade, chthoniobacter, Geobacter, Acidibacter, Alphal Cluster, Fluviicola, and Lacunisphaera) showed strong associations with DOM optical variables in both rivers, whereas more than 85% of DOM-bacterial genera associations were different between rivers. These results suggest that the relationship between DOM and bacterial communities had different responses in rivers with different urbanization levels. The partial least square path model indicated that the total standardized effect of physico-chemicals on bacterial niche breadth was higher in NR (0.62) than in WR (0.35), whereas humic substances showed an opposite pattern (NR: -0.42; WR: 1.67). The distinct effects of physico-chemicals and DOM on bacterial niche breadths between rivers could be due to the different effects of urbanization and human activities on the environmental conditions of riverine ecosystems. Our findings revealed a huge dissimilarity in the bacteria-DOM co-occurrence networks between rivers with different urbanization levels and provide a novel insight that urbanization may enhance DOM's importance to bacterial niche breadths.


Assuntos
Matéria Orgânica Dissolvida , Rios , Humanos , Rios/química , Ecossistema , Urbanização , RNA Ribossômico 16S/genética , Bactérias/genética , Espectrometria de Fluorescência
5.
J Environ Manage ; 326(Pt B): 116737, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403459

RESUMO

Dissolved organic matter (DOM), known as a key to the aquatic carbon cycle, is influenced by abiotic and biotic factors. However, the compositional variation and these factors' effects on fluorescence DOM (FDOM) in urban rivers undergoing different anthropogenic pressure are poorly investigated. Herein, using fluorescence excitation-emission matrix and parallel factor analysis (EEM-PARAFAC), four FDOM components (C1, C2, C3, and C4) were identified in a less urbanized north river (NR) and a more urbanized west river (WR) of Jiulong River Watershed in Fujian province, China. C1, C2, and C4 were related to humic-like substances (HLS) and C3 to protein-like substances (PLS). HLS (63.9% in WR and 36.4% in NR) and PLS (62.7% in WR and 37.3% in NR) exhibited higher fluorescence in the more urbanized river. We also found higher PLS in winter, but higher HLS in summer for both rivers. Although the coefficient of variation indicated a difference in FDOM components stability to some extent between the two rivers, the typhoon event that occurred in summer had a stronger disruptive impact on the CDOM and FDOM of a more urbanized river than that of a less urbanized river. We explore abiotic and biotic factors' effects on FDOM using the partial least squares path model (PLS-PM). PLS-PM results revealed higher significant influences of biotic factors on FDOM in the more urbanized river. This study enhances our understanding of FDOM dynamics of rivers with different anthropogenic pressure together with the abiotic and biotic factors driving them.


Assuntos
Matéria Orgânica Dissolvida , Rios , Substâncias Húmicas/análise , Análise Fatorial , Estações do Ano , China , Espectrometria de Fluorescência
6.
Crit Rev Biotechnol ; : 1-16, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424845

RESUMO

Bioelectrochemical systems such as microbial fuel cells (MFCs) have gained extensive attention due to their abilities to simultaneously treat wastewater and generate renewable energy resources. Recently, to boost the system performance, the photoelectrode has been incorporated into MFCs for effectively exploiting the synergistic interaction between light and microorganisms, and the resultant device is known as photo-assisted microbial fuel cells (photo-MFCs). Combined with the metabolic reaction of organic compounds by microorganisms, photo-MFCs are capable of simultaneously converting both chemical energy and light energy into electricity. This article aims to systematically review the recent advances in photo-MFCs, including the introduction of specific photosynthetic microorganisms used in photo-MFCs followed by the discussion of the fundamentals and configurations of photo-MFCs. Moreover, the materials used for photoelectrodes and their fabrication approaches are also explored. This review has shown that the innovative strategy of utilizing photoelectrodes in photo-MFCs is promising and further studies are warranted to strengthen the system stability under long-term operation for advancing practical application.

7.
Int J Syst Evol Microbiol ; 72(11)2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36367518

RESUMO

An aerobic denitrifying bacterium, designated as strain CPY4T, was isolated from activated sludge treating urban sewage under alternating aerobic/anaerobic conditions by an enrichment culture technique. Cells of strain CPY4T were Gram-stain-negative, aerobic, long rod-shaped, motile by means of single polar flagellum and capable of aerobic denitrification with citrate as the carbon source. Growth of strain CPY4T was observed at 10-45 °C (optimum, 30-35 °C), at pH 6.0-10.5 (optimum, pH 8.0-8.5) and in 0-5 % NaCl (optimum, 0-3 %; w/v). The 16S rRNA gene sequence of strain CPY4T showed the highest similarity to Zobellella denitrificans ZD1T (97.9 %), followed by Zobellella endophytica 59N8T (97.6 %), Zobellella aerophila JC2671T (97.2 %), Zobellella taiwanensis ZT1T (97.1 %) and Zobellella maritima 102-Py4T (96.3 %). Genome comparisons between CPY4T and other Zobellella species showed highest digital DNA-DNA hybridization with Z. denitrificans ZD1T (43.8 %) and highest average nucleotide identity (ANIb and ANIm) of genome nucleotide sequences with Z. denitrificans ZD1T(90.7 and 92 %, respectively). Phylogenetic analysis revealed that strain CPY4T fell within the clade comprising the type strains of Zobellella species and formed a phyletic line with them, which was distinct from other members of the family Aeromonadaceae. The sole respiratory ubiquinone was quinone 8. The predominant fatty acids (>10 % of the total fatty acids) of strain CPY4T were summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c), summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and C16 : 0. The genomic DNA G+C content was 62.7 mol %. In the polar lipid profile, diphosphatidylglycerol, phosphatidylglycerol, phosphatidyl ethanolamine, phospholipids and aminolipids were the major compounds. Based on the genotypic and phenotypic data, strain CPY4T represents a novel species of the genus Zobellella, for which the name Zobellella iuensis sp. nov. is proposed. The type strain is CPY4T (=JCM 34456T=CGMCC 1.18722T).


Assuntos
Aeromonadaceae , Esgotos/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Composição de Bases , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/química , Análise de Sequência de DNA , Fosfolipídeos/química , Ubiquinona/química
8.
Environ Sci Technol ; 56(17): 12257-12266, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35960262

RESUMO

Massive microplastics are deposited in the coastal zone. Tire particles (TPs) are an important microplastic source, but little is known about how TPs affect the microbial community composition and function in coastal sediments and the role leachable additives play in TP toxicity. Here, a microcosm experiment was performed using coastal sediments amended with different doses of TPs and with their leachable additives to investigate their effects on the sediment microbial community composition and function. Environmentally relevant concentrations of TPs can change the microbial community structure, decrease community diversity, and inhibit nutrient cycling processes, including carbon fixation and degradation, nitrification, denitrification, and sulfur cycling in sediments. Notably, the raw TP and leachate treatments showed consistent effects. A variety of additives were found in the pore water of sediment, and they could explain over 90% of the variations of the community structure. Further modeling revealed that leachable additives not only directly influenced community function but also indirectly affected community diversity and function by shifting the community structure. In addition, rare taxa could be crucial mediators of ecological functions of sediment microbial community. Combined, this study provides novel insights into the role of TPs' leachable additives in affecting sediment microbial community and function.


Assuntos
Sedimentos Geológicos , Microbiota , Sedimentos Geológicos/química , Microplásticos , Nitrificação , Plásticos/farmacologia
9.
Environ Res ; 215(Pt 3): 114347, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116490

RESUMO

Laminar-flow microfluidic microbial fuel cell (LMMFC) has attracted attention due to the advantage of the liquid-liquid interface between anolyte and catholyte without the use of membrane as a separator resulting in less fabrication cost. Unlike previous studies of LMMFC using syringe pumps, this study proposes the use of osmotic pumps to feed anolyte and catholyte in the microchannel without any additional power supply. The osmotic pump was constructed with two cylindrical chambers separated by a forward osmosis membrane, with the initial draw solution concentration of 90 g l-1 NaCl. We have, for the first time, demonstrated using the osmotic pumps to deliver both anolyte and catholyte and create co-laminar flow in LMMFC. Under the catholyte and anolyte flow rates of 18 ml/h and 40 ml/h respectively, LMMFC cultivated with Shewanella oneidensis produced the maximum power density of 87 mW m-2 and current density of 747 mA m-2 with the internal resistance of 1660 Ω. Further studies are warranted to develop osmotic pumps-fed LMMFC into a potential platform for portable biosensors.


Assuntos
Fontes de Energia Bioelétrica , Emprego , Microfluídica , Osmose , Cloreto de Sódio
10.
Artigo em Inglês | MEDLINE | ID: mdl-33492207

RESUMO

A bisphenol A-degrading bacterium, designated as strain H4T, was isolated from surface seawater, which was sampled from the Jiulong River estuary in southeast PR China. Strain H4T is Gram-stain-negative, aerobic, short rod-shaped, lacking bacteriochlorophyll a, motile with multifibrillar stalklike fascicle structures and capable of degrading bisphenol A. Growth of strain H4T was observed at 24-45 °C (optimum, 32 °C), at pH 5.5-9 (optimum, pH 7.0) and in 0-7 % NaCl (optimum, 2 %; w/v) . The 16S rRNA gene sequence of strain H4T showed highest similarity to Croceicoccus pelagius Ery9T (98.7 %), Croceicoccus sediminis (98.3 %), Croceicoccus naphthovorans PQ-2T (98.1 %) and Croceicoccus ponticola GM-16T (97.6 %), followed by Croceicoccus marinus E4A9T (96.7 %) and Croceicoccus mobilis Ery22T (96.0 %). Phylogenetic analysis revealed that strain H4T fell within a clade comprising the type strains of Croceicoccus species and formed a phyletic line with them that was distinct from other members of the family Erythrobacteraceae. The sole respiratory quinone was quinone 10 (Q-10). The predominant fatty acids (>5 % of the total fatty acids) of strain H4T were summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c), summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), C17 : 1 ω6c and C14 : 02-OH. The genomic DNA G+C content was 62.8 mol%. In the polar lipid profile, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, two unidentified phospholipids, two sphingoglycolipids and three unknown lipids were the major compounds. Based on the genotypic and phenotypic data, strain H4T represents a novel species of the genus Croceicoccus, for which the name Croceicoccus bisphenolivorans sp. nov. is proposed. The type strain is H4T (=DSM 102182T=MCCC1 K02301T).


Assuntos
Alphaproteobacteria/classificação , Compostos Benzidrílicos/metabolismo , Fenóis/metabolismo , Filogenia , Água do Mar/microbiologia , Alphaproteobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Estuários , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
11.
Ecotoxicol Environ Saf ; 209: 111818, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33360284

RESUMO

Estrogens are among the most concerned emerging contaminants in the wastewater treatment effluent due to their sexual disruption in aquatic wildlife. The use of microalgae for secondary wastewater effluent polishing is a promising approach due to the economic benefit and value-added products. In this study, three microalgae species, including Selenastrum capricornutum, Scenedesmus quadricauda and Chlorella vulgaris were selected to conduct batch experiments to examine important mechanisms, especially the role of algal extracellular organic matter (AEOM) on two selected estrogens (17ß-estradiol, E2 and 17α-ethynylestradiol, EE2) removal. Results showed that estrogens could not be significantly degraded under visible light irradiation and adsorption of estrogens by microalgae was negligible. All three living microalgae cultures have ability to remove E2 and EE2, and Selenastrum capricornutum showed the highest E2 and EE2 removal efficiency of 91% and 83%, respectively, corresponding to the reduction of predicted estrogenic activity of 86%. AEOM from three microalgae cultures could induce photodegradation of estrogens, and AEOM from Selenastrum capricornutum and Chlorella vulgaris achieved 100% of E2 and EE2 removal under visible light irradiation. Fluorescence excitation-emission matrix spectroscopy identified humic/fulvic-like substances in AEOM from three microalgae cultures, which might be responsible for inducing the indirect photolysis of E2 and EE2. Therefore, in the living microalgae cultures, the major estrogens removal mechanisms should include biotransformation as well as AEOM meditated photocatalytic degradation. Since removal rates through photodegradation could be faster than biotransformation, the AEOM mediated photocatalytic degradation can play a potential role to remove emerging contaminants when using microalgae technology for wastewater effluent treatment.


Assuntos
Chlorella vulgaris/metabolismo , Estrogênios/metabolismo , Poluentes Químicos da Água/metabolismo , Biotransformação , Estradiol/metabolismo , Estrogênios/análise , Estrona/metabolismo , Etinilestradiol/análise , Etinilestradiol/metabolismo , Microalgas/metabolismo , Fotólise , Águas Residuárias/química , Poluentes Químicos da Água/análise
12.
Int J Syst Evol Microbiol ; 70(3): 1822-1829, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32048985

RESUMO

Two Gram-stain-negative, aerobic, motile and rod-shaped bacteria, one designated as strain AXBT, capable of degrading estrogens, and another, YL23T, capable of degrading estrogen and bisphenol A, were isolated from activated sludge in Xiamen City, PR China. The optimum temperature and pH of both strains were 25-35 °C and pH 7.0-8.0. While strain AXBT could tolerate 3 % (w/v) NaCl, YL23T could only grow between 0-1 % (w/v) NaCl. They contained ubiquinone-10 as the major quinone, spermidine as the major polyamine, summed feature 8 (comprising C18:1ω6c and/or C18:1ω7c) as the major fatty acids and diphosphatidylglycerol, phosphatidylcholine, phosphatidyldimethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol and sphingoglycolipid as the major polar lipids. The DNA G+C contents of strains AXBT and YL23T were 63.6 and 63.7 mol%, respectively. Based on the results of 16S rRNA gene sequence analysis, strains AXBT and YL23T belonged to the genus Sphingobium. Strain AXBT was most closely related to Sphingobium chlorophenolicum NBRC 16172T (97.5 %) and Sphingobium chungbukense DJ77T (97.2 %), and strain YL23T was most closely related to S. chlorophenolicum NBRC 16172T (97.4 %) and S. quisquiliarum P25T (97.1 %). Average nucleotide identity values between these two strains and S. chlorophenolicum NBRC 16172T, S. chungbukense DJ77T, Sphingobium chinhatense IP26T, Sphingobium quisquiliarum P25T and Sphingobium japonicum UT26ST were from 80.7 to 85.8 %. In conclusion, strains AXBT and YL23T represent novel species of the genus Sphingobium, for which the names Sphingobium estronivorans sp. nov. and Sphingobium bisphenolivorans sp. nov. are proposed, respectively. The type strains of S. estronivorans and S. bisphenolivorans are AXBT (=MCCC 1K01232T=DSM 102173T) and YL23T (=MCCC 1K02300T=DSM 102172T), respectively.


Assuntos
Filogenia , Esgotos/microbiologia , Sphingomonadaceae/classificação , Águas Residuárias/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espermidina/química , Sphingomonadaceae/isolamento & purificação , Ubiquinona/análogos & derivados , Ubiquinona/química
13.
Ecotoxicol Environ Saf ; 195: 110463, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32182531

RESUMO

Microbial treatment for vanadium contamination of soils is a favorable and environment-friendly method. However, information of the resistant mechanism of the strains in soils to vanadium, especially to tetravalent vanadium [vanadium(IV)], is still limited. Herein, potential of the vanadium(IV) biosorption and biotransformation of the strains (4K1, 4K2, 4K3 and 4K4) which were capable of tolerating vanadium(IV) was determined. For biosorption, the bioadsorption and the bioabsorption of vanadium(IV) occur on the bacterial cell wall and within the cell, respectively, were taken into consideration. Comparison of the vanadium(IV) adsorbed on the bacterial cell walls and remained in the cells after sorption indicated the major bacterial vanadium(IV) sorption role of the bioadsorption which was at least one order of magnitude higher than the bioabsorption amount. Isotherm study using various isotherm models revealed a monolayer and a multilayer vanadium(IV) biosorption by 4K2 and the others (4K1, 4K3 and 4K4), respectively. Higher biosorption was observed in acidic conditions than in alkaline conditions, and the maximum biosorption was 2.41, 9.35, 7.76 and 8.44 mg g-1 observed at pH 6 for 4K1, at pH 3 for 4K2, and at pH 4 for 4K3 and 4K4, respectively. At the present experimental range of the initial vanadium(IV) concentration, optimal biosorption capacity of the bacteria was observed at the vanadium(IV) level of 100-250 mg L-1. Different biotransformation level of vanadium(IV) in soils by the stains was observed during a 28-d pot incubation of the soils mixed with the strains, which can be attributed to the discrepancy of both soil properties and bacterial species. Present study can help to fill up the gaps of the insufficient knowledge of the vanadium(IV) resistant mechanism of the strains in soils.


Assuntos
Bactérias/metabolismo , Poluentes do Solo/metabolismo , Vanádio/metabolismo , Adsorção , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Biotransformação , Óxido Ferroso-Férrico , Concentração de Íons de Hidrogênio , Mineração , Solo/química , Microbiologia do Solo , Poluentes do Solo/toxicidade , Titânio , Vanádio/toxicidade
14.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446556

RESUMO

Various bacteria, mainly actinobacteria and proteobacteria, are capable of aerobic estrogen degradation. In a previous study, we used the obligate aerobic alphaproteobacterium Sphingomonas sp. strain KC8 as a model microorganism to identify the initial metabolites involved in the oxygenolytic cleavage of the estrogen A ring: 4-hydroxyestrone, a meta-cleavage product, and a dead-end product pyridinestrone acid. In this study, we identified the downstream metabolites of this aerobic degradation pathway using ultraperformance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS). 4-Norestrogen-5(10)-en-3-oyl-coenzyme A and its closely related deconjugated (non-coenzyme A [non-CoA]) structure, 4-norestrogenic acid, were detected in the estrone-grown strain KC8 cultures. The structure of 4-norestrogenic acid was elucidated using nuclear magnetic resonance (NMR) spectroscopy. The extracellular distribution and the accumulation of 4-norestrogenic acid in the bacterial cultures indicate that the estrogen-degrading bacteria cannot degrade this deconjugated product. We also observed temporal accumulation and subsequent consumption of a common steroid metabolite, 3aα-H-4α(3'-propanoate)-7aß-methylhexahydro-1,5-indanedione (HIP), in the bacterial cultures. The metabolite profile and genomic analyses shed light on the biochemical mechanisms involved in the degradation of the A and B rings of natural estrogens. In this proposed aerobic pathway, C-4 of the meta-cleavage product is removed by a 2-oxoacid oxidoreductase through oxidative decarboxylation to produce the 4-norestrogen-5(10)-en-3-oyl-CoA. Subsequently, the B ring is cleaved by hydrolysis. The resulting A/B-ring-cleaved product is transformed into a common steroid metabolite HIP through ß-oxidation reactions. Accordingly, the A and B rings of different steroids are degraded through at least three peripheral pathways, which converge at HIP, and HIP is then degraded through a common central pathway.IMPORTANCE Estrogens, often detected in surface waters worldwide, have been classified as endocrine disrupting chemicals and carcinogens. Bacterial degradation is crucial for removing natural estrogens from natural and engineered ecosystems; however, current knowledge regarding the biochemical mechanisms and catabolic enzymes involved in estrogen biodegradation is very limited. Our estrogen metabolite profile and genomic analyses on estrone-degrading bacteria enabled us to characterize the aerobic estrogen degradation pathway. The results greatly expand our understanding of microbial steroid degradation. In addition, the characteristic metabolites, dead-end products, and degradation genes can be used as biomarkers to investigate the fate and biodegradation potential of estrogens in the environment.


Assuntos
Estrogênios/química , Estrogênios/metabolismo , Sphingomonas/metabolismo , Aerobiose , Biodegradação Ambiental , Estrutura Molecular , Oxirredução , Sphingomonas/genética
15.
Appl Microbiol Biotechnol ; 103(21-22): 9155-9168, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31641816

RESUMO

Wastewater treatment plants (WWTPs) rely mainly on the microbial assemblages to contribute significantly for the removal of organic pollutants and nutrients. However, limited information is available on the ecological driving forces underlying the turnover of prokaryotic communities across wastewater treatment processes (i.e., from influents (IFs) and effluents (EFs)) within WWTPs. Here, we used a combination of the 16S rRNA gene amplicon sequencing and a quantitative ecological null model analysis to explore the ecological processes governing the turnover of the prokaryotic communities and the dominant taxonomic taxa across wastewater treatment processes of five full-scale WWTPs in China. Our results indicated that a significant variation in the composition of prokaryotic communities and the dominant taxa between IFs and EFs. The analysis of the environmental sources of indicator OTUs showed that a relatively lower abundance of the sludge/sewage and human guts associated OTUs in EFs than in IFs. Ecological null models revealed that among the ecological processes, deterministic processes were dominant in controlling the turnover of the overall communities from IFs to EFs, whereas the relative importance of deterministic processes varied among the dominant taxa (i.e., Bacteroidetes > Proteobacteria > Gammaproteobacteria > Firmicutes > Betaproteobacteria). However, the assembly of IF and EF communities was influenced mainly by the deterministic and stochastic processes, respectively. In addition, our results indicated that EF communities have a higher phylogenetic diversity than those of the IF communities, but the abundance of prokaryotic 16S rRNA genes was lower in EFs than in IFs. Overall, our study provides a novel insight of the assembly mechanisms underlying the turnover of prokaryotic communities during wastewater treatment processes.


Assuntos
Bacteroidetes/classificação , Betaproteobacteria/classificação , Firmicutes/classificação , Gammaproteobacteria/classificação , Águas Residuárias/microbiologia , Purificação da Água/métodos , Bacteroidetes/genética , Bacteroidetes/metabolismo , Betaproteobacteria/genética , Betaproteobacteria/metabolismo , China , Firmicutes/genética , Firmicutes/metabolismo , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , RNA Ribossômico 16S/genética , Águas Residuárias/química , Poluentes Químicos da Água/análise
16.
Ecotoxicol Environ Saf ; 180: 723-732, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31152986

RESUMO

Natural and synthetic estrogens have been widely detected in wastewater treatment plant (WWTP) influent and effluent as well as in the corresponding receiving aqueous environment and other ecosystems. Microalgae can be used to remove nitrogen and phosphorus in wastewater, but the species-dependent removal of estrogens needs further investigation. In this study we investigated estrone, 17ß-estradiol and 17α-ethynylestradiol removals and transformation products by four common microalgae Haematococcus pluvialis, Selenastrum capricornutum, Scenedesmus quadricauda, and Chlorella vulgaris. It was found that H. pluvialis, S. capricornutum and S. quadricauda could more effectively remove all three estrogens in synthetic wastewater effluent. The estrogenic activities i.e. 17ß-estradiol equivalency determined by yeast estrogenic screening assay showed substantial estrogenic activity reductions after biotransformation by H. pluvialis, S. capricornutum, and S. quadricauda. Quadrupole Time-of-flight Mass Spectrometry results identified several possible ring-cleavage metabolites as well as their metabolic pathways, which had not been reported yet, confirming the estrogen degradation rather than mere absorption or uptake by microalgae. The findings demonstrate that not only can some specific bacteria degrade estrogens, but also the widely living microalgae are able to degrade these emerging pollutants, suggesting that microalgae could be an advanced treatment of WWTPs to remove nutrients and estrogens.


Assuntos
Clorófitas/metabolismo , Congêneres do Estradiol/metabolismo , Microalgas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Biotransformação , Estradiol/metabolismo , Estrona/metabolismo , Etinilestradiol/metabolismo , Redes e Vias Metabólicas
17.
J Environ Manage ; 249: 109427, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31450198

RESUMO

Industrialization and accelerated population growth have created a huge amount of sewage sludge. Many studies have reported the sewage sludge as a sink of major and trace elements, but less is known about their geochemical fractionations. In order to assess the mobility, the distribution, bioavailability, and toxicity of those elements in sludge, we collected the sewage sludge samples from all the seven wastewater treatment plants in Xiamen City, China. Results revealed a strong spatial variation and the occurrence of 48 elements with concentrations ranging from 1.00×10-2 mg kg-1 (Re) to 9.03×101 g kg-1 (Fe) on the basis of dry sludge weight. Sequential extraction procedure showed that residual and oxidizable fractions were the main geochemical fractions of most studied elements. However, Ca, Mn, Sr, and Ni were mainly bound to acid-exchangeable fractions, while Fe, Zn, Cd, Cr, Co, and V were mainly distributed in the reducible fractions. The contamination factor and risk assessment code indicated that Ni, Cu, Zn, Cd, Cr, Co, Sr, Ca, Mn, Mo, Re, and W were highly mobile with less retention time and exerted high environmental risks through sludge land application. The sludge disposal strategy should consider not only the total concentrations of a broad range of elements but also their bioavailability.


Assuntos
Metais Pesados , Oligoelementos , China , Cidades , Medição de Risco , Esgotos , Eliminação de Resíduos Líquidos
18.
Appl Microbiol Biotechnol ; 102(12): 5323-5334, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29696331

RESUMO

Efficient approaches for the utilization of waste sewage sludge have been widely studied. One of them is to use it for the bioenergy production, specifically methane gas which is well-known to be driven by complex bacterial interactions during the anaerobic digestion process. Therefore, it is important to understand not only microorganisms for producing methane but also those for controlling or regulating the process. In this study, azithromycin analogs belonging to macrolide, ketolide, and lincosamide groups were applied to investigate the mechanisms and dynamics of bacterial community in waste sewage sludge for methane production. The stages of anaerobic digestion process were evaluated by measuring the production of intermediate substrates, such as protease activity, organic acids, the quantification of bacteria and archaea, and its community dynamics. All azithromycin analogs used in this study achieved a high methane production compared to the control sample without any antibiotic due to the efficient hydrolysis process and the presence of important fermentative bacteria and archaea responsible in the methanogenesis stage. The key microorganisms contributing to the methane production may be Clostridia, Cladilinea, Planctomycetes, and Alphaproteobacteria as an accelerator whereas Nitrosomonadaceae and Nitrospiraceae may be suppressors for methane production. In conclusion, the utilization of antibiotic analogs of macrolide, ketolide, and lincosamide groups has a promising ability in finding the essential microorganisms and improving the methane production using waste sewage sludge.


Assuntos
Reatores Biológicos/microbiologia , Metano/biossíntese , Esgotos/microbiologia , Anaerobiose , Antibacterianos/farmacologia , Archaea/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Microbiologia Industrial
19.
J Environ Manage ; 206: 93-102, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29059576

RESUMO

Sulfamethoxazole (SMX) is a common medicine prescribed to treat infections. Due to vast use, SMX has been detected in different parts of the world. Hence, it has become a high risk because of its long term persistence with high biological activity in the ecosystem. Therefore, it is necessary to understand the mechanism of SMX degradation in different genus of bacteria, which is presently unclear. In the present study, degradation of 5 mg L-1 SMX was studied in three isolated pure bacterial cultures, Ochrobactrum sp. SMX-PM1-SA1, Labrys sp. SMX-W1-SC11 and Gordonia sp. SMX-W2-SCD14 and results showed up to 45.2%, 62.2% and 51.4% degradation, respectively within 288 h. Additionally, strain SA1 and strain SCD14 showed up to 66.2% and 69.2% of 4-aminophenol degradation at an initial concentration of 5 mg L-1 within 216 h whereas Labrys sp. SMX-W1-SC11 completely degraded 4-aminophenol at the same concentration within 120 h. Moreover, all three pure bacteria also completely degraded 3-amino-5-methylisoxazole at initial concentration of 4 mg L-1 within 120 h. Furthermore, gas chromatography-mass spectrometry and quadrupole time-of-flight mass spectrometry analysis results revealed that 3-amino-5-methylisoxazole, 4-aminophenol and hydroquinone were the three main by-products of SMX catabolism. In addition, cell free extracts of both Labrys sp. SMX-W1-SC11 and Gordonia sp. SMX-W2-SCD14 showed hydroquinone dioxygenase activity. Besides, all three bacterial strains showed resistance to different heavy metals. Moreover, all three pure bacterial cultures also showed positive chemotactic response toward 3-amino-5-methylisoxazole and hydroquinone based on the drop plate assay. The results of this study recommend these microorganisms for bioremediation of SMX contaminated sites.


Assuntos
Bactérias , Biodegradação Ambiental , Sulfametoxazol , Metais Pesados
20.
Environ Microbiol ; 19(12): 4993-5009, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28967165

RESUMO

Although the health of rivers is threatened by multiple anthropogenic stressors with increasing frequency, it remains an open question how riverine microbial communities respond to emerging micropollutants. Here, by using 16S rDNA amplicon sequencing of 60 water samples collected during different hydrological seasons, we investigated the spatio-temporal variation and the co-occurrence patterns of microbial communities in the anthropogenically impacted Jiulong River in China. The results indicated that the riverine microbial co-occurrence network had a nonrandom, modular structure, which was mainly shaped by the taxonomic relatedness of co-occurring species. Fecal indicator bacteria may survive for prolonged periods of time in river water, but they formed an independent module which had fewer interactions with typical freshwater bacteria. Multivariate analysis demonstrated that nutrients and micropollutants [i.e., pharmaceuticals and personal care products (PPCPs)] exerted combined effects in shaping α- and ß-diversity of riverine microbial communities. Remarkably, we showed that a hitherto unrecognized disruptive effect of PPCPs on the abundance variations of central species and module communities was stronger than the influence of physicochemical factors, suggesting the key role played by micropollutants for the microbial co-occurrence relationships in lotic ecosystems. Overall, our findings provide novel insights into community assembly in aquatic environments experiencing anthropogenic stresses.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Rios/química , Rios/microbiologia , Poluentes Químicos da Água/efeitos adversos , Poluição da Água/efeitos adversos , Bactérias/genética , China , DNA Ribossômico/genética , Ecossistema , Consórcios Microbianos/genética , Consórcios Microbianos/fisiologia , RNA Ribossômico 16S/genética , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA