RESUMO
Photocatalytic technology is considered an ideal approach for clean energy conversion and environmental pollution applications. In this work, a bifunctional BiOBr/ZIF-8/ZnO photocatalyst was proposed for removing phenols in wastewater and generating hydrogen peroxide. Insights from scanning electron microscopy measurements revealed the well-dispersion of ZIF-8/ZnO was on the BiOBr layer, which could effectively prevent agglomeration of ZIF-8 and facilitate the separation of carriers. In addition, the optimal H2O2 yield of the BiOBr/ZIF-8/ZnO sample could reach 116 mmol·L-1·g-1 within 2 h, much higher than that of pure BiOBr (with the value of 82 mmol·L-1·g-1). The optimal BiOBr/ZIF-8/ZnO sample could also remove 90% of the phenol or bisphenol A in 2 h, and its kinetic constants were 3.8 times and 2.3 times that of pure BiOBr, respectively. Based on the analysis of the various experimental characterizations, the photocatalytic mechanism of the S-scheme BiOBr/ZIF-8/ZnO composite for the degradation of phenolic pollutants and generation of H2O2 was proposed. The formation of the heterojunction and the oxygen vacancy work together to significantly improve its photocatalytic efficiency. In addition, the BiOBr/ZIF-8/ZnO catalyst has a certain impact on the degradation of phenol in actual wastewater, providing a way to effectively remove refractory pollutants and generate H2O2 in actual water.
RESUMO
The graphic carbon nitride/polyaniline (g-C3N4/PANI) hybrid composites were successfully synthesized by a facile in situ polymerization process under ice water bath. The photocatalytic activities of the g-C3N4/PANI composites were evaluated by using oxytetracycline (OTC) as model pollutants. The optimal g-C3N4/PANI composite (5%PANI: the g-C3N4/PANI hybrid with 5 wt.% of PANI) showed an enhancement degradation rate of 5-fold compared to that of conventional g-C3N4 under simulated-sunlight irradiation. In addition, the 5%PANI demonstrate significantly photocatalytic evolution H2 rate (163.2 µmol/(gâ hr)) under the visible light irradiation. Furthermore, based on the results of optical performance and electrochemical testing, a possible mechanism was proposed, indicating that the incorporation of PANI into the traditional g-C3N4 can effectively tune the electronic structures, improve the photo-generated electrons-holes separation and enhance extensive absorption of visible light. Such a g-C3N4/PANI hybrid nanocomposites could be envisaged to possess great potentials in practical wastewater treatment and water splitting.
Assuntos
Luz , Processos Fotoquímicos , Compostos de Anilina , CatáliseRESUMO
The major challenges of clean energy and environmental pollution have resulted in the development of photocatalysis technologies for energy conversion and the degradation of refractory pollutants. Herein, a novel CdSe/Se/BiOBr hydrangea-like photocatalyst was used to produce hydrogen peroxide (H2O2) and degrade ciprofloxacin (CIP). The Z-scheme heterojunction structure of the photocatalyst and the doping of selenium (Se) led to the efficient separation of electron-hole pairs and charge transfer. The optimized sample of 2 wt% CdSe/Se/BiOBr produced 142.15 mg·L-1 rate of H2O2, which was much higher than that produced by pure BiOBr (89.4 mg·L-1) or CdSe/Se (10.9 mg·L-1). Additionally, almost 100 % of CIP was degraded within 30 min, with a first order rate constant of nearly 5.35 times that of pure BiOBr and 81.44 times that of pure CdSe/Se. The excellent removal efficiency of CIP from natural water matrices confirmed that the composites are promising for the removal of contaminants from natural waterways. Based on trapping experiments, electron spin resonance spectra (ESR) spectroscopy, and density functional theory (DFT) calculations, the photocatalytic mechanisms of H2O2 and CIP degradation by the Z-scheme CdSe/Se/BiOBr composites were proposed. Overall, the dual-functional CdSe/Se/BiOBr composite could potentially be applied for photocatalytic production of H2O2 and treatment of organic pollutants in water.
Assuntos
Compostos de Cádmio , Compostos de Selênio , Selênio , Bismuto , Catálise , Ciprofloxacina , Peróxido de HidrogênioRESUMO
Seeking highly-efficient and cost-effective photocatalyst remains key to boosting photocatalytic H2 evolution activity. Herein we have designed an innovative, non-heavy-metal-based hybrid photocatalyst via in-situ decoration of ZnS nanoparticles with Ti3C2 MXene nanosheets toward enhanced photocatalytic H2 production. The incorporation of Ti3C2 essentially promotes the charge transfer and extends the lifetime of photo-induced carriers, thereby resulting in an augmented H2 production yield of 502.6⯵molâ¯g-1â¯h-1 under optimal conditions, being almost 4-fold higher than pure ZnS (124.6⯵molâ¯g-1â¯h-1). Thus, this work has demonstrated ZnS/MXene photocatalytic as a promising candidate for hydrogen generation to boost the entire clean energy system and provided a new insight into further broadening the water splitting application of MXene-based materials.
RESUMO
Two-dimensional transition metal dichalcogenides (2D TMDs) and their heterostructures have by far stimulated growing research interests in the field of optoelectronics and photocatalysis. In this regard, scalable fabrication of 2D TMDs at an environmentally-benign and cost-effective manner via liquid phase exfoliation is a particularly fascinating concept. Herein we report a facile and green strategy to produce few-layered WS2 suspensions at a large scale by a direct exfoliation of commercial WS2 powders in water-ethanol mixtures. In turn, by making full use of the features of 2D layered WS2, a novel 2D WS2/MoS2 composite was constructed for the first time via an in-situ hydrothermal reaction to grow MoS2 nanoflakes onto few-layered WS2 basal planes. The as-obtained WS2/MoS2 heterostructure was investigated for photocatalytic applications. Such a hybrid material demonstrated superior photocatalytic activity in the photocatalysis of organic dye molecules relative to that of pristine 2D WS2, MoS2 and their physical mixtures. This enhancement was associated with the 2D WS2/MoS2 heterostructuring effect. In addition, comparisons of the photocatalytic performances of our heterojunctions with those of recently reported 2D TMD-based hybrid materials manifested a significantly higher efficiency.
RESUMO
Well-defined, uniform bismuth vanadate (BiVO4) microcolumns were synthesized through a refined hydrothermal route. During the fabrication process, a detailed orthogonal design on the synthetic conditions was performed, aiming to optimize the experimental parameters to produce BiVO4 materials (BiVO4 (Opt.)) with the most prominent visible-light-driven photocatalytic efficiency, where the catalytic activities of the synthesized materials were evaluated via the decolorization of methylene blue under visible light irradiation. The BiVO4 (Opt.) were then targetedly produced according to the determined optimal conditions and well characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet and visible diffuse-reflectance spectroscopy and photoluminescence spectroscopy. Compared with the commercial P25-TiO2 photocatalysts, the as-synthesized BiVO4 (Opt.) displayed superior visible-light-driven photocatalytic activities for the degradation of metronidazole-contained wastewater with the presence of H2O2. The degradation efficiency of metronidazole reached up to 70 % within 180 min, leading to a brief speculation on the possibly major steps of the visible-light-driven photocatalytic process. The current study provides a distinctive route to design novel shaped BiVO4 architectures with advanced photocatalytic capacities for the treatment of organic pollutants in the aqueous environment.