Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mutagenesis ; 36(6): 401-406, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34516639

RESUMO

The repeated-dose liver micronucleus (RDLMN) assay is a novel method for detecting genotoxic chemicals. Two carcinogens methyl carbamate (MC) and 1,3-propane sultone (PS) were evaluated for the liver micronucleus in a 14-day repeated-dose study with Crl: CD (SD) IGS rats. Additionally, micronucleated reticulocytes (MN-RET) in peripheral blood and DNA damage (alkaline comet assay) in the liver were also assessed in the same animals. Ten groups of five male Crl: CD (SD) IGS rats were treated once daily with MC (300, 600 or 1200 mg/kg/day), PS (37.5, 75 or 150 mg/kg/day), negative control or three positive controls by oral gavage for 15 days. Blood samples were collected at 3 h after the last administration for determining MN-RET frequencies (%MN-RET), and the livers were sampled for determining the frequency of micronuclei and DNA damage. MC was negative in the comet assay, liver micronucleus assay and reticulocyte micronucleus assay, while PS was positive in all three assays. These results are consistent with the previous genotoxic findings of MC and PS. Therefore, the liver micronucleus assay can be effectively integrated into repeated-dose studies in animals. Moreover, integration of multiple genotoxicity end points into one study can reduce the number of animals, boost the experimental efficiency, and provides a comprehensive evaluation of the genotoxic potential of chemicals.


Assuntos
Carbamatos/toxicidade , Núcleo Celular/efeitos dos fármacos , Fígado/efeitos dos fármacos , Reticulócitos/efeitos dos fármacos , Tiofenos/toxicidade , Animais , Carcinógenos/toxicidade , Aberrações Cromossômicas , Ensaio Cometa/métodos , Dano ao DNA , Relação Dose-Resposta a Droga , Esquema de Medicação , Masculino , Testes para Micronúcleos/métodos , Ratos , Ratos Sprague-Dawley
2.
J Biol Chem ; 288(47): 33654-33666, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24121507

RESUMO

Autophagy and apoptosis regulate cancer cell viability in response to cytotoxic stress; however, their functional relationship remains unclear. p62/sequestosome 1 is a multifunctional protein and a signaling hub that shuttles ubiquitinated proteins to the lysosome during autophagy. Autophagy inhibition up-regulates p62, and prior data suggest that p62 may mediate apoptosis. Here, we demonstrate that p62 can regulate a caspase-8-dependent apoptosis in response to the BH3 mimetic agent, ABT-263. Up-regulation of p62 was shown to enhance ABT-263-induced caspase-8 activation that was Bax-dependent and resulted from mitochondrial amplification. Dependence upon caspase-8 was confirmed using caspase-8-deficient cells and by caspase-8 siRNA. Ectopic wild-type p62, but not p62 mutants with loss of ability to promote apoptosis, was shown to co-localize with caspase-8 and to promote its self-aggregation in ABT-263-treated cells, shown using a bimolecular fluorescence complementation assay. Endogenous p62 co-localized with caspase-8 in the presence of ABT-263 plus an autophagy inhibitor. Caspase-8 was shown to interact and co-localize with the autophagosome marker, LC3II. Knockdown of p62 attenuated binding between caspase-8 and LC3II, whereas p62 overexpression enhanced the co-localization of caspase-8 aggregates with LC3. LC3 knockdown did not affect interaction between caspase-8 and p62, suggesting that p62 may facilitate caspase-8 translocation to the autophagosomal membrane. A direct activator of caspase-8, i.e., TRAIL, alone or combined with ABT-263, induced caspase-8 aggregation and co-localization with p62 that was associated with a synergistic drug interaction. Together, these results demonstrate that up-regulation of p62 can mediate apoptosis via caspase-8 in the setting of autophagy inhibition.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Caspase 8/biossíntese , Fagossomos/enzimologia , Sulfonamidas/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Caspase 8/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células Jurkat , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fagossomos/genética , Proteína Sequestossoma-1 , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Regulação para Cima/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 39(9): 1680-4, 2014 May.
Artigo em Zh | MEDLINE | ID: mdl-25095384

RESUMO

OBJECTIVE: To observe the effect of Schisandra chinensis lignans (SCL) on neuronal apoptosis and PI3K/AKT signaling pathway of rats in the cerebral ischemia injury model, and study its possible mechanism. METHOD: Rats were orally administered SCL high, middle and low dose groups (100, 50, 25 mg x kg(-1)) for 14 days. The cerebral ischemia injury model was established by using the suture-occluded method to rate the neurological functions. The cerebral infarction area was observed by TTC staining. The pathological changes in brain tissues were determined by HE staining. Bcl-2 and Bax expressions were detected by immunohistochemical assay. The protein expressions of p-AKT and AKT were assayed by Western blotting. RESULT: Compared with the model group, SCL high, middle and low dose groups showed reduction in the cerebral infarction area to varying degrees, improve the pathological changes in brain tissues, promote the expression of apoptin Bcl-2 and p-AKT, and inhibit the expression of apoptin Bax. CONCLUSION: SCL shows a protective effect on rats with cerebral ischemia injury. Its mechanism may be related to the increase in p-AKT ability and antiischemic brain injury capacity and the inhibition of nerve cells.


Assuntos
Apoptose/efeitos dos fármacos , Isquemia Encefálica/prevenção & controle , Lignanas/farmacologia , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Schisandra/química , Administração Oral , Animais , Western Blotting , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Imuno-Histoquímica , Lignanas/administração & dosagem , Masculino , Neurônios/metabolismo , Neurônios/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Fitoterapia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
4.
J Biol Chem ; 286(46): 40002-12, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21949121

RESUMO

AZD8055 is an ATP-competitive inhibitor of mammalian target of rapamycin (mTOR) that forms two multiprotein complexes, mTORC1 and mTORC2, and negatively regulates autophagy. We demonstrate that AZD8055 stimulates and potentiates chemotherapy-mediated autophagy, as shown by LC3I-II conversion and down-regulation of the ubiquitin-binding protein p62/sequestosome 1. AZD8055-induced autophagy was pro-survival as shown by its ability to attenuate cell death and DNA damage (p-H2AX), and to enhance clonogenic survival by cytotoxic chemotherapy. Autophagy inhibition by siRNA against Beclin 1 or LC3B, or by chloroquine, partially reversed the cytoprotective effect of AZD8055 that was independent of cell cycle inhibition. The pro-survival role of autophagy was confirmed using ectopic expression of Beclin 1 that conferred cytoprotection. To determine whether autophagy-mediated down-regulation of p62/sequestosome 1 contributes to its pro-survival role, we generated p62 knockdown cells using shRNA that showed protection from chemotherapy-induced cell death and DNA damage. We also overexpressed wild-type (wt) p62 that promoted chemotherapy-induced cell death, whereas mutated p62 at functional domains (PB1, UBA) failed to do so. The ability of ectopic wt p62 to promote cell death was blocked by AZD8055. AZD8055 was shown to inhibit phosphorylation of the autophagy-initiating kinase ULK1 at Ser(757) and inhibited known targets of mTORC1 (p-mTOR Ser(2448), p70S6K, p-S6, p4EBP1) and mTORC2 (p-mTOR Ser(2481), p-AKT Ser(473)). Knockdown of mTOR, but not Raptor or Rictor, reduced p-ULK1 at Ser(757) and enhanced chemotherapy-induced autophagy that resulted in a similar cytoprotective effect as shown for AZD8055. In conclusion, AZD8055 inhibits mTOR kinase and ULK1 phosphorylation to induce autophagy whose pro-survival effect is due, in part, to down-regulation of p62.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Morfolinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Regulação para Baixo/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteína Sequestossoma-1 , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
J Hepatol ; 56(1): 176-83, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21835141

RESUMO

BACKGROUND & AIMS: The mammalian target of rapamycin (mTOR) plays a pivotal role in hepatocellular carcinoma (HCC). Previous studies indicated that inhibition of mTORC1 enhanced histone deacetylase inhibitors (HDACis)-mediated anti-tumor activity, accompanied with feedback activation of AKT. Therefore, dual targeting of mTORC1/C2 should be more efficient in suppressing AKT activity and in enhancing the anti-tumor activity of HDACi in HCC. METHODS: The interactions between mTOR kinase inhibitors (mTORKis) (i.e., Pp242, AZD8055, OSI027) and HDACis (i.e., SAHA, LBH589) were examined in vitro using HCC cell lines and in vivo using patient-derived primary HCC xenografts on SCID mice. RESULTS: mTORKis significantly enhanced HDACi-induced apoptosis in HCC cells. The inhibition of both mTORC1/2 not only efficiently blocked mTORC1 signaling, but also abrogated AKT-feedback activation caused by selective mTORC1 inhibition. The co-treatment of mTORKi and HDACi further inhibited AKT signaling and upregulated Bim. Dysfunction of mTORC2 by shRNA significantly lowered the threshold of HDACi-induced cytotoxicity by abrogating AKT activation. Knockdown of AKT1 sensitized Pp242/HDACi-induced apoptosis and ectopic expression of constitutively active AKT1 abrogated the combination-induced cytotoxicity, indicating AKT plays a vital role in the combination-induced effects. Knockdown of Bim prevented Pp242/HDACis-induced cytotoxicity in HCC. Lastly, in vivo studies indicated that the combination of AZD8055 and SAHA almost completely inhibited tumor-growth, without obvious adverse effects, by abrogating AKT and upregulating Bim; while either agent alone shows only 30% inhibition in primary HCC xenografts. CONCLUSIONS: Our findings suggest that a combining-regimen of mTORKi and HDACi may be an effective therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Inibidores de Histona Desacetilases/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Proteínas/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Animais , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Sequência de Bases , Proteína 11 Semelhante a Bcl-2 , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos SCID , Complexos Multiproteicos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Hepatology ; 52(5): 1680-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20725905

RESUMO

UNLABELLED: Heparan sulfate proteoglycans (HSPGs) act as coreceptors or storage sites for growth factors and cytokines such as fibroblast growth factor and Wnts. Glypican 3 (GPC3) is the most highly expressed HSPG in hepatocellular carcinoma (HCC). Sulfatase 2 (SULF2), an enzyme with 6-O-desulfatase activity on HSPGs, is up-regulated in 60% of primary HCCs and is associated with a worse prognosis. We have previously shown that the oncogenic effect of SULF2 in HCC may be mediated in part through up-regulation of GPC3. Here we demonstrate that GPC3 stimulates the Wnt/ß-catenin pathway and mediates the oncogenic function of SULF2 in HCC. Wnt signaling in vitro and in vivo was assessed in SULF2-negative Hep3B HCC cells transfected with SULF2 and in SULF2-expressing Huh7 cells transfected with short hairpin RNA targeting SULF2. The interaction between GPC3, SULF2, and Wnt3a was assessed by coimmunoprecipitation and flow cytometry. ß-catenin-dependent transcriptional activity was assessed with the TOPFLASH (T cell factor reporter plasmid) luciferase assay. In HCC cells, SULF2 increased cell surface GPC3 and Wnt3a expression, stabilized ß-catenin, and activated T cell factor transcription factor activity and expression of the Wnt/ß-catenin target gene cyclin D1. Opposite effects were observed in SULF2-knockdown models. In vivo, nude mouse xenografts established from SULF2-transfected Hep3B cells showed enhanced GPC3, Wnt3a, and ß-catenin levels. CONCLUSION: Together, these findings identify a novel mechanism mediating the oncogenic function of SULF2 in HCC that includes GPC3-mediated activation of Wnt signaling via the Wnt3a/glycogen synthase kinase 3 beta axis.


Assuntos
Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , Sulfotransferases/sangue , Animais , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Glipicanas/sangue , Glipicanas/genética , Humanos , Antígeno Ki-67/genética , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Luciferases/genética , Camundongos , Camundongos Nus , Plasmídeos/genética , Sulfatases , Transfecção , Proteínas Wnt/genética , Proteína Wnt3 , Proteína Wnt3A
7.
J Med Chem ; 64(11): 7434-7452, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34011155

RESUMO

BCR-ABL kinase inhibition is an effective strategy for the treatment of chronic myeloid leukemia (CML). Herein, we report compound 3a-P1, bearing a difluoro-indene scaffold, as a novel potent pan-inhibitor against BCR-ABL mutants, including the most refractory T315I mutant. As the privileged (S)-isomer compared to its (R)-isomer 3a-P2, 3a-P1 exhibited potent antiproliferative activities against K562 and Ku812 CML cells and BCR-ABL and BCR-ABLT315I BaF3 cells, with IC50 values of 0.4, 0.1, 2.1, and 4.7 nM, respectively. 3a-P1 displayed a good safety profile in a battery of assays, including single-dose toxicity, hERG K+, and genotoxicity. It also showed favorable mice pharmacokinetic properties with a good oral bioavailability (32%), a reasonable half-life (4.61 h), and a high exposure (1386 h·ng/mL). Importantly, 3a-P1 demonstrated a higher potency than ponatinib in a mice xenograft model of BaF3 harboring BCR-ABLT315I. Overall, the results indicate that 3a-P1 is a promising drug candidate for the treatment of CML to overcome the imatinib-resistant T315I BCR-ABL mutation.


Assuntos
Desenho de Fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Piperazina/química , Inibidores de Proteínas Quinases/química , Administração Oral , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/metabolismo , Meia-Vida , Humanos , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Isomerismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Mutação , Piperazina/metabolismo , Piperazina/farmacologia , Piperazina/uso terapêutico , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridazinas/química , Piridazinas/farmacologia , Piridazinas/uso terapêutico , Relação Estrutura-Atividade
8.
Liver Int ; 30(10): 1522-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21040406

RESUMO

BACKGROUND: Sulfatase 2 (SULF2), an extracellular heparan sulphate 6-O-endosulphatase, has an oncogenic effect in hepatocellular carcinoma (HCC) that is partially mediated through glypican 3, which promotes heparin-binding growth factor signalling and HCC cell growth. SULF2 also increases phosphorylation of the anti-apoptotic Akt kinase substrate GSK3ß and SULF2 expression is associated with a decreased apoptotic index in human HCCs. METHODS: We investigated the functional and mechanistic effects of SULF2 on drug-induced apoptosis of HCC cells using immunohistochemistry, Western immunoblotting, gene transfection, real-time quantitative polymerase chain reaction, MTT and apoptosis assays and immunocytochemistry. RESULTS: The increased expression of SULF2 in human HCCs was confirmed by immunohistochemistry and immunoblotting. Treatment with inhibitors of MEK, JNK and PI3 kinases decreased the viability of SULF2-negative Hep3B HCC cells and induced apoptotic caspase 3 and 7 activity, which was most strongly induced by the PI3K inhibitor LY294002. Forced expression of SULF2 in Hep3B cells significantly decreased activity of the apoptotic caspases 3 and 7 and induced resistance to LY294002-induced apoptosis. As expected, LY294002 inhibited activation of Akt kinase by PI3K. Conversely, knockdown of SULF2 using an shRNA construct targeting the SULF2 mRNA induced profound cell growth arrest and sensitized the endogenously SULF2-expressing HCC cell lines Huh7 and SNU182 to drug-induced apoptosis. The effects of knockdown of SULF2 on HCC cells were mediated by decreased Akt phosphorylation, downregulation of cyclin D1 and the anti-apoptotic molecule Bcl-2, and upregulation of the pro-apoptotic molecule BAD. CONCLUSION: The prosurvival, anti-apoptotic effect of SULF2 in HCC is mediated through activation of the PI3K/Akt pathway.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/enzimologia , Cromonas/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Neoplasias Hepáticas/enzimologia , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Sulfotransferases/metabolismo , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Imuno-Histoquímica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Sulfatases , Sulfotransferases/genética , Transfecção , Proteína de Morte Celular Associada a bcl/metabolismo
9.
Hepatology ; 47(4): 1211-22, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18318435

RESUMO

UNLABELLED: It has been shown that the heparin-degrading endosulfatase, sulfatase 1 (SULF1), functions as a liver tumor suppressor, but the role of the related sulfatase, sulfatase 2 (SULF2), in liver carcinogenesis remains to be elucidated. We investigated the effect of SULF2 on liver tumorigenesis. Expression of SULF2 was increased in 79 (57%) of 139 hepatocellular carcinomas (HCCs) and 8 (73%) of 11 HCC cell lines. Forced expression of SULF2 increased HCC cell growth and migration, whereas knockdown of SULF2 using short hairpin RNA targeting SULF2 abrogated HCC cell proliferation and migration in vitro. Because SULF1 and SULF2 desulfate heparan sulfate proteoglycans (HSPGs) and the HSPG glypican 3 (GPC3) is up-regulated in HCC, we investigated the effects of SULF2 on GPC3 expression and the association of SULF2 with GPC3. SULF2-mediated cell growth was associated with increased binding of fibroblast growth factor 2 (FGF2), phosphorylation of extracellular signal-regulated kinase and AKT, and expression of GPC3. Knockdown of GPC3 attenuated FGF2 binding in SULF2-expressing HCC cells. The effects of SULF2 on up-regulation of GPC3 and tumor growth were confirmed in nude mouse xenografts. Moreover, HCC patients with increased SULF2 expression in resected HCC tissues had a worse prognosis and a higher rate of recurrence after surgery. CONCLUSION: In contrast to the tumor suppressor effect of SULF1, SULF2 has an oncogenic effect in HCC mediated in part through up-regulation of FGF signaling and GPC3 expression.


Assuntos
Carcinoma Hepatocelular/enzimologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Glipicanas/metabolismo , Neoplasias Hepáticas/enzimologia , Sulfotransferases/metabolismo , Animais , Carcinoma Hepatocelular/diagnóstico , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células , Humanos , Neoplasias Hepáticas/diagnóstico , Camundongos , Camundongos Nus , Prognóstico , Transdução de Sinais/fisiologia , Sulfatases , Regulação para Cima
10.
Mol Cancer Ther ; 7(9): 2589-98, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18765823

RESUMO

We have reported previously the activity of the insulin-like growth factor-I (IGF-IR)/insulin receptor (InsR) inhibitor, BMS-554417, in breast and ovarian cancer cell lines. Further studies indicated treatment of OV202 ovarian cancer cells with BMS-554417 increased phosphorylation of HER-2. In addition, treatment with the pan-HER inhibitor, BMS-599626, resulted in increased phosphorylation of IGF-IR, suggesting a reciprocal cross-talk mechanism. In a panel of five ovarian cancer cell lines, simultaneous treatment with the IGF-IR/InsR inhibitor, BMS-536924 and BMS-599626, resulted in a synergistic antiproliferative effect. Furthermore, combination therapy decreased AKT and extracellular signal-regulated kinase activation and increased biochemical and nuclear morphologic changes consistent with apoptosis compared with either agent alone. In response to treatment with BMS-536924, increased expression and activation of various members of the HER family of receptors were seen in all five ovarian cancer cell lines, suggesting that inhibition of IGF-IR/InsR results in adaptive up-regulation of the HER pathway. Using MCF-7 breast cancer cell variants that overexpressed HER-1 or HER-2, we then tested the hypothesis that HER receptor expression is sufficient to confer resistance to IGF-IR-targeted therapy. In the presence of activating ligands epidermal growth factor or heregulin, respectively, MCF-7 cells expressing HER-1 or HER-2 were resistant to BMS-536924 as determined in a proliferation and clonogenic assay. These data suggested that simultaneous treatment with inhibitors of the IGF-I and HER family of receptors may be an effective strategy for clinical investigations of IGF-IR inhibitors in breast and ovarian cancer and that targeting HER-1 and HER-2 may overcome clinical resistance to IGF-IR inhibitors.


Assuntos
Benzimidazóis/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Piridonas/farmacologia , Receptor ErbB-2/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Cross-Talk/efeitos dos fármacos , Receptor ErbB-2/antagonistas & inibidores , Receptor de Insulina/antagonistas & inibidores
11.
Neuro Oncol ; 10(3): 309-19, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18445700

RESUMO

The effects of combining histone deacetylase (HDAC) inhibitors and proteasome inhibitors were evaluated in both established glioblastoma multiforme (GBM) cell lines and short-term cultures derived from the Mayo Clinic xenograft GBM panel. Coexposure of LBH589 and bortezomib at minimally toxic doses of either drug alone resulted in a striking induction of apoptosis in established U251, U87, and D37 GBM cell lines, as well as in GBM8, GBM10, GBM12, GBM14, and GBM56 short-term cultured cell lines. Synergism of apoptosis induction was also observed in U251 cells when coexposing cells to other HDAC inhibitors, including LAQ824 and trichostatin A, with the proteasome inhibitor MG132, thus demonstrating a class effect. In U251 cells, bortezomib alone or in combination with LBH589 decreased Raf-1 levels and suppressed Akt and Erk activation. LBH589 or bortezomib alone increased expression of the cell cycle regulators p21 and p27. Additionally, the combination, but not the individual agents, markedly enhanced JNK activation. Synergistic induction of apoptosis after exposure to LBH589 and bortezomib was partially mediated by Bax translocation from the cytosol to the mitochondria resulting from Bax conformational changes. Bax translocation precedes cytochrome c release and apoptosis, and selective down-regulation of Bax using siRNA significantly mitigates the cytotoxicity of LBH589 and bortezomib. This combination regimen warrants further preclinical and possible clinical study for glioma patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Inibidores Enzimáticos/administração & dosagem , Glioma/tratamento farmacológico , Mitocôndrias/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Ácidos Borônicos/administração & dosagem , Bortezomib , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Eletroforese em Gel de Poliacrilamida , Inibidores de Histona Desacetilases , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Indóis , Panobinostat , Inibidores de Proteassoma , Transporte Proteico/efeitos dos fármacos , Pirazinas/administração & dosagem , RNA Interferente Pequeno , Proteína X Associada a bcl-2/efeitos dos fármacos
12.
Clin Cancer Res ; 13(4): 1140-8, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17317822

RESUMO

PURPOSE: To evaluate the effects of combining the multiple receptor tyrosine kinase inhibitor AEE788 and histone deacetylase (HDAC) inhibitors on cytotoxicity in a broad spectrum of cancer cell lines, including cisplatin-resistant ovarian adenocarcinoma cells. EXPERIMENTAL DESIGN: Multiple cancer cell lines were treated in vitro using AEE788 and HDAC inhibitors (LBH589, LAQ824, and trichostatin A), either alone or in combination. Effects on cytotoxicity were determined by growth and morphologic assays. Effects of the combination on cell signaling pathways were determined by Western blotting, and the results were confirmed using pathway-specific inhibitors and transfection of constitutively active proteins. RESULTS: Cell treatment with AEE788 and HDAC inhibitors (LBH589, LAQ824, and trichostatin A) in combination resulted in synergistic induction of apoptosis in non-small cell lung cancer (MV522, A549), ovarian cancer (SKOV-3), and leukemia (K562, Jurkat, and ML-1) cells and in OV202hp cisplatin-resistant human ovarian cancer cells. AEE788 alone or in combination with LBH589 inactivated mitogen-activated protein kinase (MAPK) and Akt cascades. Inhibition of either MAPK and/or Akt enhanced LBH589-induced apoptosis. In contrast, constitutively active MAPK or Akt attenuated LBH589 or LBH589 + AEE788-induced apoptosis. Increased apoptosis was correlated with enhanced reactive oxygen species (ROS) generation. The free radical scavenger N-acetyl-l-cysteine not only substantially suppressed the ROS accumulation but also blocked the induction of apoptosis mediated by cotreatment with AEE788 and LBH589. CONCLUSION: Collectively, these results show that MAPK and Akt inactivation along with ROS generation contribute to the synergistic cytotoxicity of the combination of AEE788 and HDAC inhibitors in a variety of human cancer cell types. This combination regimen warrants further preclinical and possible clinical study for a broad spectrum of cancers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores de Histona Desacetilases , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteína Oncogênica v-akt/antagonistas & inibidores , Purinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Ácidos Hidroxâmicos/farmacologia , Indóis , Células Jurkat , Células K562 , Leucemia/tratamento farmacológico , Leucemia/enzimologia , Leucemia/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteína Oncogênica v-akt/metabolismo , Panobinostat , Purinas/administração & dosagem
13.
Mol Cancer Ther ; 5(9): 2378-87, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16985072

RESUMO

This study was undertaken to characterize preclinical cytotoxic interactions for human malignancies between the multikinase inhibitor sorafenib (BAY 43-9006) and proteasome inhibitors bortezomib or MG132. Multiple tumor cell lines of varying histiotypes, including A549 (lung adenocarcinoma), 786-O (renal cell carcinoma), HeLa (cervical carcinoma), MDA-MB-231 (breast), K562 (chronic myelogenous leukemia), Jurkat (acute T-cell leukemia), MEC-2 (B-chronic lymphocytic leukemia), and U251 and D37 (glioma), as well as cells derived from primary human glioma tumors that are likely a more clinically relevant model were treated with sorafenib or bortezomib alone or in combination. Sorafenib and bortezomib synergistically induced a marked increase in mitochondrial injury and apoptosis, reflected by cytochrome c release, caspase-3 cleavage, and poly(ADP-ribose) polymerase degradation in a broad range of solid tumor and leukemia cell lines. These findings were accompanied by several biochemical changes, including decreased phosphorylation of vascular endothelial growth factor receptor-2, platelet-derived growth factor receptor-beta, and Akt and increased phosphorylation of stress-related c-Jun NH2-terminal kinase (JNK). Inhibition of Akt was required for synergism, as a constitutively active Akt protected cells against apoptosis induced by the combination. Alternatively, the JNK inhibitor SP600125 could also protect cells from apoptosis induced by the combination, indicating that both inhibition of Akt and activation of JNK were required for the synergism. These findings show that sorafenib interacts synergistically with bortezomib to induce apoptosis in a broad spectrum of neoplastic cell lines and show an important role for the Akt and JNK pathways in mediating synergism. Further clinical development of this combination seems warranted.


Assuntos
Apoptose/efeitos dos fármacos , Benzenossulfonatos/farmacologia , Ácidos Borônicos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteína Oncogênica v-akt/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteassoma , Pirazinas/farmacologia , Piridinas/farmacologia , Antineoplásicos/farmacologia , Bortezomib , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Células Jurkat , Células K562 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Niacinamida/análogos & derivados , Compostos de Fenilureia , Complexo de Endopeptidases do Proteassoma/metabolismo , Sorafenibe
14.
Oncogene ; 24(46): 6861-9, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16007148

RESUMO

BAY 43-9006, a multikinase inhibitor that targets Raf, prevents tumor cell proliferation in vitro and inhibits diverse human tumor xenografts in vivo. The mechanism of action of BAY 43-9006 remains incompletely defined. In the present study, the effects of BAY 43-9006 on the antiapoptotic Bcl-2 family member Mcl-1 were examined. Treatment of A549 lung cancer cells with BAY 43-9006 diminished Mcl-1 levels in a time- and dose-dependent manner without affecting other Bcl-2 family members. Similar BAY 43-9006-induced Mcl-1 downregulation was observed in ACHN (renal cell), HT-29 (colon), MDA-MB-231 (breast), KMCH (cholangiocarcinoma), Jurkat (acute T-cell leukemia), K562 (chronic myelogenous leukemia) and MEC-2 (chronic lymphocytic leukemia) cells. Mcl-1 mRNA levels did not change in BAY 43-9006-treated cells. Instead, BAY 43-9006 enhanced proteasome-mediated Mcl-1 degradation. This Mcl-1 downregulation was followed by mitochondrial cytochrome c release and caspase activation as well as enhanced sensitivity to other proapoptotic agents. The caspase inhibitor Boc-D-fmk inhibited BAY 43-9006-induced caspase activation but not cytochrome c release. In contrast, Mcl-1 overexpression inhibited cytochrome c release and other features of BAY 43-9006-induced apoptosis. Conversely, Mcl-1 downregulation by short hairpin RNA enhanced BAY 43-9006-induced apoptosis. Collectively, these findings demonstrate that drug-induced Mcl-1 downregulation contributes to the proapoptotic effects of BAY 43-9006.


Assuntos
Apoptose/efeitos dos fármacos , Benzenossulfonatos/farmacologia , Regulação para Baixo/fisiologia , Proteínas de Neoplasias/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Piridinas/farmacologia , Adamantano/análogos & derivados , Adamantano/farmacologia , Sequência de Bases , Caspases/metabolismo , Linhagem Celular Tumoral , Primers do DNA , Ativação Enzimática , Humanos , Hidroquinonas/farmacologia , Sistema de Sinalização das MAP Quinases , Proteína de Sequência 1 de Leucemia de Células Mieloides , Niacinamida/análogos & derivados , Compostos de Fenilureia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sorafenibe
15.
Cancer Res ; 63(23): 8420-7, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14679005

RESUMO

Interactions between the histone deacetylase inhibitors (HDACIs) suberoylanilide hydroxamic acid (SAHA) and sodium butyrate (SB) and the heat shock protein (Hsp) 90 antagonist 17-allylamino-17-demethoxygeldanamycin (17-AAG) have been examined in human leukemia cells (U937). Coadministration of marginally toxic concentrations of 17-AAG with sublethal concentrations of SB or SAHA resulted in highly synergistic induction of mitochondrial damage (i.e., cytochrome c release), caspase-3 and -8 activation, and apoptosis. Similar interactions were noted in human promyelocytic (HL-60) and lymphoblastic (Jurkat) leukemia cells. These events were accompanied by multiple perturbations in signal transduction, cell cycle, and survival-related pathways, including early down-regulation of Raf-1, inactivation of extracellular signal-regulated kinase (ERK) 1/2 and mitogen-activated protein/ERK kinase (MEK) 1/2, diminished expression of phospho-Akt, and late activation of c-Jun-NH(2)-terminal kinase, but no changes in expression of phospho-p38 mitogen-activated protein kinase. Coadministration of 17-AAG blocked SAHA-mediated induction of the cyclin-dependent kinase inhibitor p21(CIP1) and resulted in reduced expression of p27(KIP1) and p34(cdc2). 17-AAG/SAHA-treated cells also displayed down-regulation of the antiapoptotic protein Mcl-1 and evidence of Bcl-2 cleavage. Enforced expression of doxycycline-inducible p21(CIP1) or constitutively active MEK1 significantly diminished 17-AAG/SAHA-mediated lethality, indicating that interference with ERK activation and p21(CIP1) induction play important functional roles in the lethal effects of this regimen. In contrast, enforced expression of constitutively active Akt failed to exert cytoprotective actions. Together, these findings indicate that coadministration of SAHA or SB with the Hsp90 antagonist 17-AAG in human leukemia cells leads to multiple perturbations in signaling, cell cycle, and survival pathways that culminate in mitochondrial injury and apoptosis. They also raise the possibility that combining such agents with Hsp90 antagonists may represent a novel antileukemic strategy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Butiratos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Ácidos Hidroxâmicos/farmacologia , Rifabutina/análogos & derivados , Rifabutina/farmacologia , Benzoquinonas , Butiratos/administração & dosagem , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Células HL-60 , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Células Jurkat , Lactamas Macrocíclicas , Rifabutina/administração & dosagem , Células U937 , Vorinostat
16.
Cancer Res ; 63(8): 1822-33, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12702569

RESUMO

The impact of disruption of the PI3K (phosphatidylinositol 3-kinase) pathway on the response of human leukemia cells to pharmacological cyclin-dependent kinase (CDK) inhibitors has been examined. Exposure of U937 monocytic leukemia cells to minimally toxic concentrations of flavopiridol (FP), roscovitine, or CGP74514A for 3 h in conjunction with the PI3K inhibitor LY294002 (abbreviated LY in the article) resulted in a marked decrease in Akt phosphorylation. Coexposure of cells to LY and CDK inhibitors also resulted in an early (i.e., within 3 h) and striking increase in mitochondrial damage [e.g., cytochrome c, second mitochondria-derived activator of caspases/direct inhibitor of apoptosis (IAP)-binding protein with low isoelectric point (Smac/DIABLO), and apoptosis-initiating factor (AIF) release], caspase activation, and apoptosis. Similar interactions were observed in a variety of other leukemia cell types (e.g., HL-60, Jurkat, Raji, and NB4). Apoptosis, induced by FP/LY, was substantially blocked by ectopic expression of Bcl-2, but to a considerably lesser extent by dominant-negative caspase-8. FP-induced apoptosis was not enhanced by agents that inhibited protein kinase (PK) A (H89), PKC (GFX), mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase (MEK1/2; U0126), p38 MAP kinase (MAPK; SB202190), m-target of rapamycin (TOR; rapamycin), or ataxia-telangiectasia mutation (ATM; caffeine), whereas the PI3K inhibitor wortmannin exerted effects similar to those of LY. The dramatic potentiation of CDK inhibitor-induced apoptosis by LY was accompanied by diminished Bad phosphorylation, induction of Bcl-2 cleavage, and down-regulation of X-linked IAP (XIAP) and Mcl-1. Cells exposed to CDK inhibitors + LY also exhibited reduced phosphorylation of glycogen synthase kinase (GSK)-3, forkhead transcription factor (FKHR), p70(S6K), and ERK, but increased activation of p34(cdc2) and p38 MAPK. LY/CDK inhibitor-treated cells also displayed diminished pRb dephosphorylation on CDK2- and CDK4-specific sites, retinoblastoma protein cleavage, and down-regulation of cyclin D(1). Inducible expression of constitutively active (myristolated) Akt significantly, albeit partially, attenuated apoptosis in Jurkat leukemia cells treated with either FP alone or the combination of FP and LY. Finally, cotreatment with LY and FP resulted in a dramatic increase in apoptosis in primary leukemic blasts obtained from a patient with acute myeloblastic leukemia. Together, these findings suggest that the PI3K/Akt pathway plays a major role in regulating the apoptotic response of human leukemia cells to pharmacological CDK inhibitors and raise the possibility that combined interruption of CDK- and PI3K-related pathways may represent a novel therapeutic strategy in hematological malignancies.


Assuntos
Antineoplásicos/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Leucemia/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/metabolismo , 2-Aminopurina/análogos & derivados , 2-Aminopurina/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Cromonas/farmacologia , Sinergismo Farmacológico , Flavonoides/farmacologia , Humanos , Leucemia/enzimologia , Leucemia/patologia , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt , Purinas/farmacologia , Roscovitina , Células Tumorais Cultivadas
17.
Cancer Res ; 62(1): 188-99, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11782377

RESUMO

Interactions between the kinase inhibitor STI571 and pharmacological antagonists of the mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)/mitogen-activated protein kinase (MAPK) cascade have been examined in human myeloid leukemia cells (K562 and LAMA 84) that express the Bcr-Abl kinase. Exposure of K562 cells to concentrations of STI571 that minimally induced apoptosis (e.g., approximately 200 nM) resulted in early suppression (i.e., at 6 h) of p42/44 MAPK phosphorylation followed at later intervals (i.e., > or =24 h) by a marked increase in p42/44 MAPK phosphorylation/activation. Coadministration of a nontoxic concentration of the MEK1/2 inhibitor PD184352 (5 microM) prevented STI571-mediated activation of p42/44 MAPK. Cells exposed to STI571 in combination with PD184352 for 48 h demonstrated a very dramatic increase in mitochondrial dysfunction (e.g., loss of DeltaPsim and cytosolic cytochrome c release) associated with procaspase-3 activation, poly(ADP-ribose) polymerase cleavage, and the appearance of the characteristic morphological features of apoptosis. Similar results were obtained using other pharmacological MEK1/2 inhibitors (e.g., PD 98059 and U0126) as well as another leukemic cell line that expresses Bcr-Abl (e.g., LAMA 84). However, synergistic induction of apoptosis by STI571 and PD184352 was not observed in human myeloid leukemia cells that do not express the Bcr-Abl kinase (e.g., HL-60 and U937) nor in normal human peripheral blood mononuclear cells. Synergistic potentiation of STI571-mediated lethality by PD184352 was associated with multiple perturbations in signaling and apoptotic regulatory pathways, including caspase-dependent down-regulation of Bcr-Abl and Bcl-2; caspase-independent down-regulation of Bcl-x(L) and Mcl-1; activation of JNK, p38 MAPK, and p34(cdc2); and diminished phosphorylation of Stat5 and CREB. Significantly, coexposure to PD184352 strikingly increased the lethality of a pharmacologically achievable concentration of STI571 (i.e., 1-2 microM) in resistant K562 cells expressing marked increases in Bcr-Abl protein levels. Together, these findings raise the possibility that treatment of Bcr-Abl-expressing cells with STI571 elicits a cytoprotective MAPK activation response and that interruption of the latter pathway (e.g., by pharmacological MEK1/2 inhibitors) is associated with a highly synergistic induction of mitochondrial damage and apoptosis. They also indicate that in the case of Bcr-Abl-positive cells, simultaneous interruption of two signal transduction pathways may represent an effective antileukemic strategy.


Assuntos
Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas de Fusão bcr-abl/biossíntese , MAP Quinase Quinase Quinases/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas do Leite , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Piperazinas/farmacologia , Pirimidinas/farmacologia , Fator 1 Ativador da Transcrição , Antineoplásicos/farmacologia , Apoptose/fisiologia , Proteína Quinase CDC2/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Fase G1/efeitos dos fármacos , Células HL-60/efeitos dos fármacos , Células HL-60/enzimologia , Células HL-60/patologia , Humanos , Mesilato de Imatinib , Proteínas Quinases JNK Ativadas por Mitógeno , Células K562/efeitos dos fármacos , Células K562/enzimologia , Células K562/patologia , MAP Quinase Quinase 1 , MAP Quinase Quinase 2 , MAP Quinase Quinase Quinases/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/fisiologia , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fator de Transcrição STAT5 , Transativadores/metabolismo , Fatores de Transcrição , Células U937/efeitos dos fármacos , Células U937/enzimologia , Células U937/patologia
18.
Cancer Res ; 63(9): 2118-26, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12727828

RESUMO

Interactions between the Bcr/Abl kinase inhibitor STI571 (Gleevec, imatinib mesylate) and histone deacetylase inhibitors (HDIs) have been examined in STI571-sensitive and -resistant Bcr/Abl(+) human leukemia cells (K562 and LAMA 84). Cotreatment of K562 cells with 250 nM imatinib mesylate and 2.0 micro M suberoylanilide hydroxamic acid (SAHA) for 24 h, exposures that were minimally toxic alone, resulted in a marked increase in mitochondrial damage (e.g., cytochrome c, Smac/DIABLO, and apoptosis-inducing factor release), caspase activation, and apoptosis. Similar events were observed in other Bcr/Abl(+) cells (i.e., LAMA 84), and in cells exposed to STI571 in combination with the HDI sodium butyrate. Coexposure of cells to HDIs in conjunction with STI571 resulted in multiple perturbations in signaling and cell cycle-regulatory proteins, including down-regulation of Raf, phospho-mitogen-activated protein kinase kinase (MEK), phospho-extracellular signal-regulated kinase (ERK), phospho-Akt, phospho-signal transducers and activators of transcription 5, cyclin D1, and Mcl-1, accompanied by dephosphorylation and cleavage of retinoblastoma protein and a striking increase in phosphorylation of c-Jun NH(2)-terminal kinase. Coexposure of Bcr/Abl(+) cells to STI571 also blocked SAHA-mediated induction of p21(CIP1) and resulted in down-regulation of Bcr/Abl protein expression. STI571 and SAHA also interacted synergistically to induce apoptosis in STI571-resistant K562 and LAMA 84 cells that display increased Bcr/Abl protein expression. Lastly, inducible expression of a constitutively active MEK1/2 construct significantly attenuated SAHA/STI571-mediated apoptosis in K562 cells, implicating disruption of the Raf/MEK/ERK axis in synergistic antileukemic effects of this drug combination. Together, these findings indicate that combined exposure of Bcr/Abl(+) cells to the kinase inhibitor STI571 and HDIs leads to diverse perturbations in signaling and cell cycle-regulatory proteins, associated with a marked increase in mitochondrial damage and cell death. They also raise the possibility that this strategy may be effective in some Bcr/Abl(+) cells that are resistant to STI571 through increased Bcr/Abl expression.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas de Fusão bcr-abl/biossíntese , Inibidores de Histona Desacetilases , Leucemia Mieloide/tratamento farmacológico , Piperazinas/farmacologia , Pirimidinas/farmacologia , Apoptose/fisiologia , Benzamidas , Sinergismo Farmacológico , Inibidores Enzimáticos/administração & dosagem , Células HL-60 , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Ácidos Hidroxâmicos/farmacologia , Mesilato de Imatinib , Células K562 , Leucemia Mieloide/enzimologia , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Mitocôndrias/efeitos dos fármacos , Piperazinas/administração & dosagem , Pirimidinas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Células U937 , Vorinostat
19.
Mol Cancer Ther ; 4(3): 457-70, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15767555

RESUMO

Interactions between the protein kinase C and Chk1 inhibitor UCN-01 and rapamycin in human leukemia cells have been investigated in relation to apoptosis induction. Treatment of U937 monocytic leukemia cells with rapamycin (10 nmol/L) in conjunction with a minimally toxic concentration of UCN-01 (100 nmol/L) for 36 hours resulted in marked potentiation of mitochondrial injury (i.e., loss of mitochondrial membrane potential and cytosolic release of cytochrome c, AIF, and Smac/DIABLO), caspase activation, and apoptosis. The release of cytochrome c, AIF, and Smac/DIABLO were inhibited by BOC-D-fmk, indicating that their release was caspase dependent. These events were associated with marked down-regulation of Raf-1, MEK, and ERK phosphorylation, diminished Akt activation, and enhanced phosphorylation of c-Jun NH2-terminal kinase (JNK). Coadministration of UCN-01 and rapamycin reduced the expression levels of the antiapoptotic members of the Bcl-2 family Mcl-1 and Bcl-xL and diminished the expression of cyclin D1 and p34(cdc2). Furthermore, enforced expression of a constitutively active MEK1 or, to a lesser extent, myristoylated Akt construct partially but significantly attenuated UCN-01/rapamycin-mediated lethality in both U937 and Jurkat cell systems. Finally, inhibition of the stress-related JNK by SP600125 or by the expression of a dominant-negative mutant of c-Jun significantly attenuated apoptosis induced by rapamycin/UCN-01. Together, these findings indicate that the mammalian target of rapamycin inhibitor potentiates UCN-01 cytotoxicity in a variety of human leukemia cell types and suggest that inhibition of both Raf-1/MEK/ERK and Akt cytoprotective signaling pathways as well as JNK activation contribute to this phenomenon.


Assuntos
Apoptose , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Leucemia/tratamento farmacológico , MAP Quinase Quinase 1/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sirolimo/farmacologia , Estaurosporina/análogos & derivados , Estaurosporina/farmacologia , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos/farmacologia , Proteína Quinase CDC2/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Citocromos c/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo , Ativação Enzimática , Genes Dominantes , Humanos , Immunoblotting , Células Jurkat , MAP Quinase Quinase 4 , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Fatores de Tempo , Células U937
20.
Oncogene ; 23(7): 1364-76, 2004 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-14647418

RESUMO

Effects of the tyrphostin tyrosine kinase inhibitor adaphostin (NSC 680410) have been examined in human leukemia cells (Jurkat, U937) in relation to mitochondrial events, apoptosis, and perturbations in signaling and cell cycle regulatory events. Exposure of cells to adaphostin concentrations > or =0.75 microM for intervals > or =6 h resulted in a pronounced release of cytochrome c and AIF, activation of caspase-9, -8, and -3, and apoptosis. These events were accompanied by the caspase-independent downregulation of Raf-1, inactivation of MEK1/2, ERK, Akt, p70S6K, dephosphorylation of GSK-3, and activation of c-Jun-N-terminal kinase (JNK) and p38 MAPK. Adaphostin also induced cleavage and dephosphorylation of pRb on CDK2- and CDK4-specific sites, as well as the caspase-dependent downregulation of cyclin D1. Inducible expression of a constitutively active MEK1 construct markedly diminished adaphostin-induced cytochrome c and AIF release, JNK activation, and apoptosis in Jurkat cells. Ectopic expression of Raf-1 or constitutively activated (myristolated) Akt also significantly attenuated adaphostin-induced apoptosis, but protection was less than that conferred by enforced activation of MEK. Lastly, antioxidants (e.g., L-N-acetylcysteine; L-NAC) opposed adaphostin-mediated mitochondrial dysfunction, Raf-1/MEK/ERK downregulation, JNK activation, and apoptosis. However, in contrast to L-NAC, enforced activation of MEK failed to block adaphostin-mediated ROS generation. Together, these findings demonstrate that the tyrphostin adaphostin induces multiple perturbations in signal transduction pathways in human leukemia cells, particularly inactivation of the cytoprotective Raf-1/MEK/ERK and Akt cascades, that culminate in mitochondrial injury, caspase activation, and apoptosis. They also suggest that adaphostin-related oxidative stress acts upstream of perturbations in these signaling pathways to trigger the cell death process.


Assuntos
Adamantano/análogos & derivados , Adamantano/farmacologia , Apoptose/efeitos dos fármacos , Hidroquinonas/farmacologia , Leucemia/tratamento farmacológico , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases/antagonistas & inibidores , Fator de Indução de Apoptose , Citocromos c/efeitos dos fármacos , Flavoproteínas/efeitos dos fármacos , Humanos , Células Jurkat , MAP Quinase Quinase Quinases/metabolismo , Proteínas de Membrana/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-raf
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA