Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Opt Express ; 32(3): 3974-3979, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297606

RESUMO

We report on the continuous-wave (CW) and, for what we believe to be the first time, passively mode-locked (ML) laser operation of an Yb3+-doped YSr3(PO4)3 crystal. Utilizing a 976-nm spatially single-mode, fiber-coupled laser diode as pump source, the Yb:YSr3(PO4)3 laser delivers a maximum CW output power of 333 mW at 1045.8 nm with an optical efficiency of 55.7% and a slope efficiency of 60.9%. Employing a quartz-based Lyot filter, an impressive wavelength tuning range of 97 nm at the zero level was achieved in the CW regime, spanning from 1007 nm to 1104 nm. In the ML regime, incorporating a commercially available semiconductor saturable absorber mirror (SESAM) to initiate and maintain soliton-like pulse shaping, the Yb:YSr3(PO4)3 laser generated pulses as short as 61 fs at 1062.7 nm, with an average output power of 38 mW at a repetition rate of ∼66.7 MHz.

2.
Sensors (Basel) ; 23(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050504

RESUMO

A resonant acoustic wave detector combined with Fabry-Pérot interference (FPI) and piezoelectric (PE) effects based on a polyvinylidene fluoride (PVDF) piezoelectric film was proposed to enhance the ability of the sensor to detect acoustic signals in a specific frequency band. The deformation of circular thin films was indicated by the interference and piezoelectric effects simultaneously, and the noise level was decreased by the real-time convolution of the two-way parallel signal. This study reveals that, at the film's resonance frequency, the minimum detection limits for the FPI and piezoelectric impacts on acoustic waves are 3.39 µPa/Hz1/2 and 20.8 µPa/Hz1/2, respectively. The convolution result shows that the background noise was reduced by 98.81% concerning the piezoelectric signal, and by 85.21% concerning the FPI signal. The convolution's signal-to-noise ratio (SNR) was several times greater than the other two signals at 10 mPa. Therefore, this resonance sensor, which the FPI and the piezoelectric effect synergistically enhance, can be applied to scenarios of acoustic wave detection in a specific frequency band and with ultrahigh sensitivity requirements.

3.
Opt Express ; 30(5): 6546-6555, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299436

RESUMO

Broadband second-harmonic-generation (SHG) in GdCOB crystals was demonstrated for the first time. Theoretical calculation and experiments for the type-I frequency doubling of GdCOB crystal was performed. The result revealed that the spectral retracing point of phase-matching angle was at around 1.65 µm. For broadband fundamental laser source tuning in the range of 1.55-1.7 µm, efficient SHG was realized, the highest conversion efficiency was 56%, and the output bandwidth reached 16 nm.

4.
Inorg Chem ; 61(1): 170-177, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34847322

RESUMO

Disordered crystals have attracted immense attention for the generation of ultrashort laser pulses due to their good thermomechanical characteristics and wide emission bandwidths. In this work, a Gd-based orthophosphate crystal, GdSr3(PO4)3, (GSP), and a Nd3+-doped GdSr3(PO4)3 crystal, (Nd:GSP), were obtained by the Czochralski method. The crystal structure, optical properties, electronic band structure, laser damage threshold, and hardness of the GSP crystal were comprehensively investigated. It exhibited a disordered structure due to the random distribution of Sr and Gd atoms in the same Wyckoff site, which caused inhomogeneous spectral broadening. Additionally, it exhibited a short UV absorption cutoff edge (<200 nm), a large band gap (5.81 eV), and a high laser damage threshold (∼1850 MW/cm2). The spectral properties and Judd-Ofelt calculations of the Nd:GSP crystals were analyzed. A wide absorption band at 803 nm, with a full width at half-maximum value of 20 nm, makes the Nd:GSP crystal suitable for the efficient pumping of AlGaAs laser diodes. Sub-100-fs pulses could be supported by its 25 nm emission bandwidth. Hence, the GSP crystal could be a promising disordered crystal laser matrix.

5.
Molecules ; 27(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36558135

RESUMO

The intrinsic n-type of epitaxial graphene on SiC substrate limits its applications in microelectronic devices, and it is thus vital to modulate and achieve p-type and charge-neutral graphene. The main groups of metal intercalations, such as Ge and Sn, are found to be excellent candidates to achieve this goal based on the first-principle calculation results. They can modulate the conduction type of graphene via intercalation coverages and bring out interesting magnetic properties to the entire intercalation structures without inducing magnetism to graphene, which is superior to the transition metal intercalations, such as Fe and Mn. It is found that the Ge intercalation leads to ambipolar doping of graphene, and the p-type graphene can only be obtained when forming the Ge adatom between Ge layer and graphene. Charge-neutral graphene can be achieved under high Sn intercalation coverage (7/8 bilayer) owing to the significantly increased distance between graphene and deformed Sn intercalation. These findings would open up an avenue for developing novel graphene-based spintronic and electric devices on SiC substrate.

6.
Appl Opt ; 60(22): 6713-6718, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612915

RESUMO

We demonstrate an all-solid-state widely wavelength-tunable Yb:YSr3(PO4)3 (Yb:YSP) laser with high efficiency. The free-running Yb:YSP laser oscillating at multiple wavelengths in the range of 1024-1054 nm is realized with different crystal lengths and output coupler transmittances. The maximum output power of 2.72 W is obtained under the absorption pump power of 7.30 W. The highest slope efficiency is 66.9%, using the crystal of 6.5-mm-length. Simultaneous dual-wavelength operation can be realized as well. Furthermore, the widely wavelength-tunable Yb:YSP laser with a range of more than 60 nm (from 1004 to 1066 nm) is achieved using a birefringent filter. The experimental results indicate that the Yb:YSP crystal can be a promising candidate for ultrafast lasers in the 1 µm region.

7.
Opt Express ; 28(22): 33274-33284, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114995

RESUMO

For the first time, the temperature stability of second-harmonic-generation (SHG) is reported for the entire space of a YCa4O(BO3)3 (YCOB) crystal for a temperature range of -10 - 520 °C. Both theoretical calculations and experimental data indicate an optimum phase-matching (PM) direction of (θ = 149.2°, ϕ = 0°), which is located in the XZ principle plane (90° < θ < 180°). A special regression phenomenon of the PM angle was found in this direction, which further increased the SHG output at high temperature (> 200 °C). As a result, for SHG of the Nd:YAG laser, the measured temperature bandwidth of a YCOB crystal cut along the optimum PM direction is larger than 490 °C·cm. As demonstrated in this study, among all nonlinear optical crystals, this cut-type is currently the best choice when temperature-insensitive SHG is required.

8.
Proc Natl Acad Sci U S A ; 114(28): 7246-7249, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652329

RESUMO

The amplitude of the photoacoustic effect for an optical source moving at the sound speed in a one-dimensional geometry increases linearly in time without bound in the linear acoustic regime. Here, use of this principle is described for trace detection of gases, using two frequency-shifted beams from a CO2 laser directed at an angle to each other to give optical fringes that move at the sound speed in a cavity with a longitudinal resonance. The photoacoustic signal is detected with a high-[Formula: see text], piezoelectric crystal with a resonance on the order of [Formula: see text] kHz. The photoacoustic cell has a design analogous to a hemispherical laser resonator and can be adjusted to have a longitudinal resonance to match that of the detector crystal. The grating frequency, the length of the resonator, and the crystal must all have matched frequencies; thus, three resonances are used to advantage to produce sensitivity that extends to the parts-per-quadrillion level.

9.
Opt Lett ; 44(7): 1742-1745, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30933135

RESUMO

The temperature bandwidth of the second harmonic generation (SHG) phase-matching process was investigated for the GdCa4O(BO3)3 (GdCOB) crystal. GdCOB exhibits a much broader temperature bandwidth in comparison with many familiar nonlinear optical (NLO) crystals. For a fundamental wave of 1,064 nm, the maximum temperature bandwidth appeared at (θ=135°, ϕ=47.3°), as predicted by the theoretical calculation and demonstrated by the SHG experiments. The GdCOB crystal is a good candidate for NLO frequency conversions under extreme temperatures.

10.
Opt Express ; 25(10): 11867-11893, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28788746

RESUMO

For the first time, the angular non-critical phase-matching (A-NCPM) second-harmonic-generation (SHG) characteristics of a family of monoclinic oxoborate crystals, RECa4O(BO3)3 (RECOB, RE = Tm, Y, Gd, Sm, Nd and La), were comprehensively investigated. For all of the realizable A-NCPM SHG styles, the feature parameters including PM wavelength, angular, wavelength and temperature acceptance bandwidths, have been derived from the theory and verified by the experiments. We discovered that the closer the ion radius between RE3+ and Ca2+, the smaller the birefringence, and the better the A-NCPM SHG properties. As a result, for the Type-I SHG on Y-axis which has the largest effective nonlinear optical coefficient (deff) among the three realizable A-NCPM styles, NdCOB crystal presents the longest PM wavelength (927 nm), the largest angular acceptance bandwidth (Δθ⋅l1/2 = 84.3 mrad·cm1/2, Δϕ⋅l1/2 = 58.8 mrad·cm1/2), and the broadest wavelength acceptance bandwidth (8.7 nm). This discovery will contribute to the design of new NCPM materials, at the same time the parameter formula will be helpful for the theoretical prediction of NCPM performance.

11.
J Acoust Soc Am ; 142(2): 641, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28863593

RESUMO

The double-mode lateral-field-excitation (LFE) bulk acoustic wave characteristics of Ca3TaGa3Si2O14 (CTGS) crystals are investigated. It is found that LFE devices based on (yxl)-57° CTGS crystals can work on both pure-LFE and pseudo-LFE modes when the driving electric field direction is normal to the crystallographic x axis of the piezoelectric substrate. Several double-mode LFE bulk acoustic wave devices based on CTGS crystals are designed and tested. The experimental results conform to the theoretical prediction well. Being able to operate in pure-LFE and pseudo-LFE modes, the double-mode LFE sensors show high sensitivity to both mechanical and electrical property changes of analytes. The results provide the crystal cut for double-mode LFE sensors, which is a critical basis of designing high-performance chemical and biological sensors by using double-mode LFE devices.

12.
Opt Lett ; 41(24): 5823-5826, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27973513

RESUMO

For KH2PO4 (KDP) crystal, the phase-matching directions of type-II second-harmonic generation (SHG) and type-II third-harmonic generation (THG) for 1 µm lasers are almost identical, i.e., at (θ=60°, φ=0°) around. Utilizing this special property, we designed a THG converter based on one KDP crystal. A quarter-wave (λ/4) plate was used to adjust the polarization of the SHG wave, and a round-trip optical path was used to realize the SHG and THG procedures successively. When the fundamental light source was a 1064 nm, 40 ps pulse laser, the maximum THG output at 355 nm was 1.13 mJ, and the highest THG conversion efficiency was 30.7%. To the best of our knowledge, this is the first time that the cascaded frequency upconversion processes are realized in one bulk nonlinear optical crystal. This method possesses many advantages for future applications, including high efficiency, a wide-working waveband, low cost, and applicability to many other crystals such as DKDP, ADP, DADP, and GdxY1-xCOB.

13.
J Acoust Soc Am ; 139(5): 2635, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27250157

RESUMO

The resonance vibrations of LiTaO3 fast-shear overtone mode resonators with a ferroelectric inversion layer are analyzed. In addition to the fast-shear mode, the coupled extensional mode is considered. Different from most of the LiTaO3 resonators studied in the literature that are based on the slow-shear mode, the resonator in this paper operates with the fast-shear overtone mode. Results show that the capacitance ratio assumes maxima at two resonances, which are identified to be the second overtone modes of fast-shear and extension, respectively. It is found that the thickness of the inversion layer has obvious influences on the capacitance ratio of fast-shear and extensional modes. This condition may provide a simple method to adjust capacitance ratios of piezoelectric resonators. The influence mechanisms are also discussed. Besides, the effect of the cut angle of the crystal on the mode shape of vibrations is also investigated. The results can be used as important basis of parameters designs of LiTaO3 resonators operating on the fast-shear overtone mode.

14.
Opt Express ; 23(3): 2163-73, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836087

RESUMO

As excellent nonlinear optical (NLO) crystals, YCa(4)O(BO(3))(3) (YCOB) and GdCa(4)O(BO(3))(3) (GdCOB) have been paid much attention since their first appearance in 1990's. From that time to now, almost all of related researches and applications have focused on their type-I phase-matching (PM) configurations which possess large effective NLO coefficient (d(eff)). In this paper, type-II second-harmonic-generation (SHG) properties of these two crystals are reported, including PM curve, d(eff), angular acceptance and walk-off angle. Both of the type-II SHG experiments for 1064 and 1320 nm have indicated that the optimum directions which have maximum d(eff) locate in the second octant, i.e. (90° < θ< 180°, 0° < ϕ < 90°). For a (112°, 81.3°)-cut, 24 mm long YCOB crystal, the largest type-II SHG conversion efficiency of a 1064 nm Nd:YAG pico-second laser is 55%, which reaches the same level of the optimum type-I sample. To our knowledge this is the first time that type-II SHG performance of YCOB and GdCOB crystals is investigated intensively. Our research has shown that the smaller d(eff) of type-II PM can be compensated by its larger angular acceptance and less beam walk-off. The same level SHG conversion efficiency implies for such type crystals the type-II components have the potential to replace type-I ones and obtain important NLO applications in the future.

15.
ACS Appl Mater Interfaces ; 15(2): 3152-3162, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36604858

RESUMO

Increasing the crystal resistivity is critically important for enhancing the signal-to-noise ratio and improving the sensing capability of high-temperature piezoelectric sensors based on langasite-type crystals. The resistivity of structural ordered langasite-type crystals is much higher compared to that of the disordered crystals. Here, we selected structural ordered Ca3TaGa3Si2O14 (CTGS) and disordered La3Ga5SiO14 (LGS) as representatives to investigate the microscopic conduction mechanism and further reveal the origin of the different resistivities of the ordered and disordered langasite-type crystals at elevated temperatures. By combining first-principles calculations and experimental investigations, we found that the different conductivity behaviors of the ordered and disordered crystals originate from different types of point defects formed in the crystal and their different contributions to the conductivity. For the disordered LGS crystal, the oxygen vacancies are apt to be formed at high temperatures, promoting the transition of valence electrons and yielding high conductivity. For the ordered CTGS crystal, the dominant TaGa antisite defects can introduce an electron-hole recombination center in the electronic band gap, significantly shortening the carrier lifetime and thus reducing the conductivity. This provides effective guidance to improve the resistivity performance of langasite-type crystals at high temperatures by optimizing the experimental conditions, such as oxygen atmosphere treatment, antisite defect modification, etc.

16.
ACS Appl Mater Interfaces ; 15(39): 46074-46084, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37734000

RESUMO

Laser crystals with multiwavelength emission characteristics are potential light sources for terahertz radiation. Herein, the pure and Nd-doped Bi2Ti2O7 (BTO) laser crystals with sizes up to 16 × 13 × 5 mm3 were successfully grown using the flux method in the KF-B2O3-CaBi4Ti4O15 growth system. The crystal structure, ideal morphology, chemical, mechanical, and thermal properties, optical transmission and Raman spectra, refractive index, absorption, and fluorescence spectra, as well as fluorescence lifetimes, were systematically studied. Besides, the spectral parameters of Nd3+ ions in the BTO crystal were systematically calculated based on the Judd-Ofelt theory. The Nd:BTO crystal has a wide transmittance range (0.44-7.30 µm), a small coefficient of thermal expansion (5.80 × 10-6 K-1), and a large absorption full width at half-maximum (fwhm) (31.2 nm) at around ∼804 nm, making it more potential for use in high-power laser systems. Moreover, fluorescence spectra show four emission peaks at 1054, 1062, 1104, and 1112 nm. The strong multiwavelength emission property makes Nd:BTO a promising laser crystal, serving as a potential light source for terahertz radiation.

17.
Nanomaterials (Basel) ; 12(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35159691

RESUMO

Epitaxial graphene on SiC without substrate interaction is viewed as one of the most promising two-dimensional (2D) materials in the microelectronics field. In this study, quasi-free-standing bilayer epitaxial graphene (QFSBEG) on SiC was fabricated by H2 intercalation under different time periods, and the temperature-dependent Raman spectra were recorded to evaluate the intrinsic structural difference generated by H2 time duration. The G peak thermal lineshift rates dω/dT showed that the H2 intercalation significantly weakened the pinning effect in epitaxial graphene. Furthermore, the G peak dω/dT value showed a perspicuous pinning effect disparity of QFSBEG samples. Additionally, the anharmonic phonon effect was investigated from the Raman lineshift of peaks. The physical mechanism responsible for dominating the G-mode temperature-dependent behavior among samples with different substrate coupling effects was elucidated. The phonon decay process of different samples was compared as the temperature increased. The evolution from in situ grown graphene to QFSBEG was determined. This study will expand the understanding of QFSBEG and pave a new way for its fabrication.

18.
Materials (Basel) ; 15(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955280

RESUMO

Phosphate crystals attract much attention on account of their rich crystal structures and excellent physical and chemical properties. Herein, Rb3Ti3P5O20 single crystals were grown by the high temperature solution method using Rb2CO3 and NH4H2PO4 as the fluxes. This crystal, with non-centrosymmetric Pca21 space group, presents a three-dimensional framework structure composed of [TiO6] octahedron, [PO4] tetrahedra, and [P2O7] dimers. The electronic structure was measured via X-ray photoelectron spectroscopy. The measurements found that Rb3Ti3P5O20 has stronger Ti-O ionic bonding properties and weaker P-O covalent bonding properties compared to RbTiOPO4. Optical measurements indicated that Rb3Ti3P5O20 has a 3.54 eV band gap and a wide transmission range (0.33-4.5 µm). Theoretical calculations showed that Rb3Ti3P5O20 crystals have a moderate birefringence of 0.079 at 1064 nm. In addition, the relationship of the structure-property was studied using first-principles method. The results demonstrated that TiO6 octahedron played a significant role for the optical properties.

19.
Inorg Chem ; 50(12): 5460-7, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21612229

RESUMO

Co(x)Zn(1-x)Al(2)O(4) (x = 0.01-0.6) nanoparticles were synthesized by the citrate sol-gel method and were characterized by X-ray powder diffraction and transmission electron microscopy to identify the crystalline phase and determine the particle size. X-ray photoelectron spectroscopy and (27)Al solid-state NMR spectroscopy were used to study the distribution of the cations in the tetrahedral and octahedral sites in Co(x)Zn(1-x)Al(2)O(4) nanoparticles as a function of particle size and composition. The results show that all of the as-synthesized samples exhibit spinel-type single phase; the crystallite size of the samples is about 20-50 nm and increases with increasing annealing temperature and decreases with Co-enrichment. Zn(2+) ions are located in large proportions in the tetrahedral sites and in small proportions in the octahedral sites in Co(x)Zn(1-x)Al(2)O(4) nanoparticles. The fraction of octahedral Zn(2+) increases with increasing Co concentration and decreases with increasing particle size. Besides the tetrahedral and octahedral coordinations, the presence of the second octahedrally coordinated Al(3+) ions is observed in the nanoparticles. The change of the inversion parameter (2 times the fraction of Al(3+) ions in tetrahedral sites) with Co concentration and particle size is consistent with that of the Zn fraction in octahedral sites. Analysis of the absorption properties indicates that Co(2+) ions are located in the tetrahedral sites as well as in the octahedral sites in the nanoparticles. The inversion degree of Co(2+) decreases with increasing particle size.

20.
Materials (Basel) ; 14(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34947199

RESUMO

In this paper, a Fabry-Pérot interference fiber sensor was fabricated by using a Polyvinyl chloride membrane (20 µm in thickness) attached at the end of a ferrule with an inner diameter of 1.1 mm. In consideration of the vibration response of the membrane, the feature of the first-order natural frequency of membrane was analyzed by COMSOL Multiphysics. The acoustic sensing performance of the Fabry-Pérot fiber interference sensor was studied in air. The results reveal that the sensor possessed good acoustic pressure sensitivity, in the order of 33.26 mV/Pa. In addition, the noise-limited minimum detectable pressure level was determined to be 58.9 µPa/Hz1/2 and the pressure-induced deflection obtained was 105 nm/Pa at the frequency of 1 kHz. The response of the sensor was approximately consistent with the reference sensor from 1 to 7 kHz. All these results support that the fabricated Fabry-Pérot fiber interference sensor may be applied for ultra-sensitive pressure sensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA