Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Environ Manage ; 358: 120895, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626487

RESUMO

Microbial inoculation plays a significant role in promoting the efficiency of biowaste conversion. This study investigates the function of Streptomyces-Bacillus Inoculants (SBI) on carbon (C) and nitrogen (N) conversion, and microbial dynamics, during cow manure (10% and 20% addition) and corn straw co-composting. Compared to inoculant-free controls, inoculant application accelerated the compost's thermophilic stage (8 vs 15 days), and significantly increased compost total N contents (+47%) and N-reductase activities (nitrate reductase: +60%; nitrite reductase: +219%). Both bacterial and fungal community succession were significantly affected by DOC, urease, and NH4+-N, while the fungal community was also significantly affected by cellulase. The contribution rate of Cupriavidus to the physicochemical factors of compost was as high as 83.40%, but by contrast there were no significantly different contributions (∼60%) among the top 20 fungal genera. Application of SBI induced significant correlations between bacteria, compost C/N ratio, and catalase enzymes, indicative of compost maturation. We recommend SBI as a promising bio-composting additive to accelerate C and N turnover and high-quality biowaste maturation. SBI boosts organic cycling by transforming biowastes into bio-fertilizers efficiently. This highlights the potential for SBI application to improve plant growth and soil quality in multiple contexts.


Assuntos
Carbono , Compostagem , Nitrogênio , Streptomyces , Streptomyces/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Esterco , Bacillus/metabolismo , Bactérias/metabolismo
2.
Bioorg Med Chem Lett ; 92: 129389, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379957

RESUMO

In this study, a series of nitric oxide (NO) -releasing 5-cyano-6-phenyl-2, 4-disubstituted pyrimidine derivatives were designed and synthesized. In the in vitro biological evaluation, compound 24l exhibited optimal antiproliferative activity against MGC-803 cells with the IC50 value of 0.95 µM, significantly better than that of the positive control 5-FU. In addition, preliminary mechanistic studies indicated that 24l inhibited colony formation and blocked MGC-803 cells in the G0/G1 phase. DAPI staining, reactive oxygen species and apoptosis assays demonstrated that 24l induced apoptosis of MGC-803 cells. Particularly, the most potent compound 24l produced the highest level of NO, and the antiproliferative activity was significantly reduced after preincubation with NO scavengers. In conclusion, compound 24l may be considered as a potential candidate antitumor agent.


Assuntos
Antineoplásicos , Óxido Nítrico , Óxido Nítrico/farmacologia , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Antineoplásicos/farmacologia , Apoptose , Pirimidinas/farmacologia , Desenho de Fármacos , Estrutura Molecular
3.
Magn Reson Chem ; 61(7): 443-447, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36960574

RESUMO

A new amide tricholomine C was isolated from the dried fruiting bodies of Tricholoma bakamatsutake. Its structure was identified by a combination of nuclear magnetic resonance spectroscopic analysis and electronic circular dichroism (ECD) calculations. The ethyl alcohol crude extract and tricholomines A-C from T. bakamatsutake were evaluated for neuroprotective activities. Of these substances, the crude extract showed weak neurite outgrowth-promoting activity in rat pheochromocytoma (PC12) cells, as well as weak inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE).


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Ratos , Animais , Butirilcolinesterase/análise , Acetilcolinesterase/análise , Amidas/farmacologia , Amidas/análise , Carpóforos/química , Misturas Complexas/análise
4.
New Phytol ; 235(1): 306-319, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35383395

RESUMO

Ectomycorrhizal fungi play a key role in forests by establishing mutualistic symbioses with woody plants. Genome analyses have identified conserved symbiosis-related traits among ectomycorrhizal fungal species, but the molecular mechanisms underlying host specificity remain poorly known. We sequenced and compared the genomes of seven species of milk-cap fungi (Lactarius, Russulales) with contrasting host specificity. We also compared these genomes with those of symbiotic and saprotrophic Russulales species, aiming to identify genes involved in their ecology and host specificity. The size of Lactarius genomes is significantly larger than other Russulales species, owing to a massive accumulation of transposable elements and duplication of dispensable genes. As expected, their repertoire of genes coding for plant cell wall-degrading enzymes is restricted, but they retained a substantial set of genes involved in microbial cell wall degradation. Notably, Lactarius species showed a striking expansion of genes encoding proteases, such as secreted ectomycorrhiza-induced sedolisins. A high copy number of genes coding for small secreted LysM proteins and Lactarius-specific lectins were detected, which may be linked to host specificity. This study revealed a large diversity in the genome landscapes and gene repertoires within Russulaceae. The known host specificity of Lactarius symbionts may be related to mycorrhiza-induced species-specific genes, including secreted sedolisins.


Assuntos
Agaricales , Basidiomycota , Micorrizas , Agaricales/genética , Animais , Basidiomycota/genética , Evolução Molecular , Genoma Fúngico , Genômica , Leite , Micorrizas/genética , Filogenia , Simbiose/genética
5.
Bioorg Med Chem ; 70: 116922, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35849914

RESUMO

Mitogen-activated extracellular signal-regulated kinase 1 and 2 (MEK1/2) are the critical components of the mitogen-activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) signaling pathway which is one of the well-characterized kinase cascades regulating cell proliferation, differentiation, growth, metabolism, survival and mobility both in normal and cancer cells. The aberrant activation of MAPK/ERK1/2 pathway is a hallmark of numerous human cancers, therefore targeting the components of this pathway to inhibit its dysregulation is a promising strategy for cancer treatment. Enormous efforts have been done in the development of MEK1/2 inhibitors and encouraging advancements have been made, including four inhibitors approved for clinical use. However, due to the multifactorial property of cancer and rapidly arising drug resistance, the clinical efficacy of these MEK1/2 inhibitors as monotherapy are far from ideal. Several alternative strategies have been developed to improve the limited clinical efficacy, including the dual inhibitor which is a single drug molecule able to simultaneously inhibit two targets. In this review, we first introduced the activation and function of the MAPK/ERK1/2 components and discussed the advantages of MEK1/2-based dual inhibitors compared with the single inhibitors and combination therapy in the treatment of cancers. Then, we overviewed the MEK1/2-based dual inhibitors for the treatment of cancers and highlighted the theoretical basis of concurrent inhibition of MEK1/2 and other targets for development of these dual inhibitors. Besides, the status and results of these dual inhibitors in both preclinical and clinical studies were also the focus of this review.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Neoplasias , Humanos , MAP Quinase Quinase 1 , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno , Mitógenos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
6.
Mycorrhiza ; 32(3-4): 341-351, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35608677

RESUMO

Truffle cultivation has drawn more and more attention for its high economic and ecological values in the world. To select symbionts suitable for cultivation purposes, we conducted greenhouse-based mycorrhization trials of two Tuber species (T. formosanum and T. pseudohimalayense) with five broad-leaved tree species (Corylus yunnanensis, Quercus aliena var. acutiserrata, Q. acutissima, Q. robur, Q. variabilis) and one conifer species (Pinus armandii). Axenically germinated seedlings of all tree species were either inoculated, or not, with spore suspensions of these two truffles in the greenhouse. Eight months after inoculation, T. formosanum or T. pseudohimalayense ectomycorrhizae were successfully formed on these six tree species, as evidenced by both morphological and molecular analyses. All selected trees showed good receptivity to mycorrhization by both fungi, with average colonization rates visually estimated at 40-50%. Plant growth, photosynthesis, and nutrient uptake were assessed 2 years after inoculation and were mainly affected by host species. Mycorrhization by both fungi significantly improved P uptake of the hosts, and the interaction between truffle species and host plant species had significant effects on leaf water and leaf K concentrations. In addition, a significantly negative correlation between leaf Ca and leaf C concentration was found across all the seedlings. In addition, mycorrhization had slightly increased plant stem and canopy, but had no significant effects on plant photosynthesis. Overall, these results suggest that the effects of these two Tuber ECMF on plant growth and nutrient acquisition depend on the identity of the host species. Moreover, all selected plant species could be symbiotic partners with either T. pseudohimalayense or T. formosanum for field cultivation purposes.


Assuntos
Ascomicetos , Micorrizas , Quercus , Quercus/microbiologia , Plântula/microbiologia , Árvores/microbiologia
7.
J Environ Manage ; 324: 116377, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36352711

RESUMO

Microbial communities and environmental conditions are both of great importance for efficient utilization of agroforestry resources. Nevertheless, knowledge about the role of soluble nutrients and enzymatic properties, and their inner links with microbial communities remain limited. This is especially the case for the co-composting of agricultural and forestry biowaste. Here, we investigate the succession of key microbes during co-composting (sawdust + cow manure, SA; straw + cow manure, ST), employing amplicon sequencing, enzyme assays, and physicochemical analyses. N-fixing bacteria (Pseudomonas) and C-degrading fungi (Acaulium) have been identified as dominant taxa during such co-composting. Although eight antibiotic resistance genes were found to persist during composting, pathogenic microbes declined with composting time. NO3--N content was screened as a determinant structuring the bacterial and fungal communities, with importance also shown for C-degrading enzymes such as cellulose, laccase, and peroxidase activity. These results identify the key microbial taxa and their main interactive environmental factors, which are potentially valuable for the development of a mixed microbial inoculant to accelerate the maturation of agroforestry biowastes composting.


Assuntos
Compostagem , Micobioma , Animais , Feminino , Bovinos , Esterco/microbiologia , Solo/química , Bactérias/genética
8.
Arch Microbiol ; 203(10): 6303-6314, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34652507

RESUMO

Truffles contribute to crucial soil systems dynamics, being involved in plentiful ecological functions important for ecosystems. Despite this, the interactions between truffles and their surrounding mycobiome remain unknown. Here, we investigate soil mycobiome differences between two truffle species, Tuber indicum (Ti) and Tuber pseudohimalayense (Tp), and their relative influence on surrounding soil mycobiota. Using traditional chemical analysis and ITS Illumina sequencing, we compared soil nutrients and the mycobiota, respectively, in soil, gleba, and peridium of the two truffle species inhabiting the same Pinus armandii forest in southwestern China. Tp soil was more acidic (pH 6.42) and had a higher nutrient content (total C, N content) than Ti soil (pH 6.62). Fungal richness and diversity of fruiting bodies (ascomata) and surrounding soils were significantly higher in Tp than in Ti. Truffle species recruited unique soil mycobiota around their ascomata: in Ti soil, fungal taxa, including Suillus, Alternaria, Phacidium, Mycosphaerella, Halokirschsteiniothelia, and Pseudogymnoascus, were abundant, while in Tp soil species of Melanophyllum, Inocybe, Rhizopogon, Rhacidium, and Lecanicillium showed higher abundances. Three dissimilarity tests, including adonis, anosim, and MRPP, showed that differences in fungal community structure between the two truffle species and their surrounding soils were stronger in Tp than in Ti, and these differences extended to truffle tissues (peridium and gleba). Redundancy analysis (RDA) further demonstrated that correlations between soil fungal taxa and soil properties changed from negative (Tp) to positive (Ti) and shifted from a moisture-driven (Tp) to a total N-driven (Ti) relationship. Overall, our results shed light on the influence that truffles have on their surrounding soil mycobiome. However, further studies are required on a broader range of truffle species in different soil conditions in order to determine causal relationships between truffles and their soil mycobiome.


Assuntos
Ascomicetos , Micorrizas , Pinus , Ascomicetos/genética , Ecossistema , Florestas , Solo , Microbiologia do Solo
9.
Magn Reson Chem ; 59(5): 587-593, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32173887

RESUMO

Two new amides tricholomines A (1) and B (2), along with nine known compounds, were isolated from the dried fruiting bodies of Tricholoma bakamatsutake. Their structures were determined on the basis of extensive spectroscopic analysis or comparison with the data in the literatures. The absolute configuration of 1 was confirmed by single crystal X-ray diffraction analysis.


Assuntos
Agaricales/química , Amidas/isolamento & purificação , Carpóforos/química , Amidas/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
10.
Mycorrhiza ; 29(6): 649-661, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31760479

RESUMO

We aimed to test whether Tuber melanosporum and native Chinese oak species could form stable mycorrhizal symbioses. Six oak species were all either inoculated or not, with spores of the Périgord black truffle in the greenhouse. Ectomycorrhizal development was monitored for up to 32 months. Seedling growth was assessed 2 years after inoculation. From 6 months after inoculation, Tuber melanosporum ectomycorrhizae were successfully produced on five Quercus species endemic to China, as shown by morphological, anatomical, and molecular analyses. Quercus mongolica and Q. longispica showed high receptivity to mycorrhization by T. melanosporum. The symbioses obtained with these two species and with Quercus senescens were stable for at least 32 months. Averaged over all three oak species, mycorrhization by T. melanosporum significantly enhanced canopy diameter, number of leaves, and mean leaf dimension. In spring 2019, mycorrhization by T. melanosporum accelerated budbreak in Q. mongolica. Quercus fabrei and Q. variabilis formed ectomycorrhizae up to 9 months after inoculation but seedlings died 3 months later, probably because of damage by grazing insects. Quercus pseudosemecarpifolia failed to form ectomycorrhizae. Results suggest that T. melanosporum-mycorrhized Q. mongolica and Q. longispica seedlings could be tested for ascocarp production and increased performance in the field.


Assuntos
Ascomicetos , Micorrizas , Quercus , China , Plântula
11.
Fungal Genet Biol ; 113: 14-23, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29448031

RESUMO

Tuber indicum is an ectomycorrhizal ascomycete that produces edible ascocarps. Based on a number of specimens with known exact origin, we investigate the speciation of the Tuber indicum complex in southwest China. Internal transcribed spacer (ITS) and simple sequence repeat (SSR) markers were used in the study. Phylogeography and population genetics analyses were combined to detect 31 wild populations of the T. indicum complex. Two distinct lineages, Tuber cf. indicum and Tuber cf. himalayense, were identified in the T. indicum complex that exhibited significant phylogeographic structures and genetic differentiation. The characteristics of haplotypes distributing along the river demonstrate that the diffusion and modern distribution pattern of species was influenced by river expansion. These findings are critical for the protection of the diversity of truffles in this region.


Assuntos
Ascomicetos/genética , Especiação Genética , Variação Genética , Genética Populacional , China , DNA Fúngico/genética , DNA Intergênico/genética , Repetições de Microssatélites , Micorrizas/genética , Filogenia , Filogeografia , Análise de Sequência de DNA , Especificidade da Espécie
12.
Mycorrhiza ; 26(3): 249-56, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26452572

RESUMO

Tuber huidongense and T. liyuanum are common commercial white truffles in China that belong to the Rufum and Puberulum groups of the genus Tuber, respectively. Their mycorrhizae were successfully synthesized with two native trees--Castanea mollissima and Pinus armandii--under greenhouse conditions. The identities of the mycorrhizae were confirmed through internal transcribed spacer (ITS) sequence analyses, and their morphological characteristics were described. All of the obtained mycorrhizae have an interlocking pseudoparenchymatous mantle, which is a typical feature of truffle mycorrhizae. The mycorrhizae of T. huidongense on the two trees have hyaline branched emanating hyphae, similar to the documented mycorrhizae of the Rufum group. The unramified, spiky, and hyaline cystidia on the mycorrhizae of T. liyuanum with both C. mollissima and P. armandii further confirmed that this characteristic is constant for the mycorrhizae of the Puberulum group. The successful mycorrhizal syntheses on the two nut-producing trees will be of economic importance in the cultivation of the two truffles.


Assuntos
Ascomicetos/classificação , Ascomicetos/citologia , Fagaceae/microbiologia , Micorrizas/classificação , Micorrizas/citologia , Pinus/microbiologia , Ascomicetos/genética , Sequência de Bases , China , DNA Ribossômico , Hifas/crescimento & desenvolvimento , Micorrizas/genética , Filogenia , Plântula/microbiologia , Sementes/microbiologia , Análise de Sequência , Árvores/microbiologia
13.
Mitochondrial DNA B Resour ; 9(6): 716-719, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868489

RESUMO

The complete mitochondrial genome of Squamanita imbachii I. Saar, is unveiled in this research for the first time. It covers 76,643 base pairs (bp) and exhibits a guanine-cytosine (GC) content of 23%. The genome includes 14 conserved protein-coding genes, 1 DNA polymerase gene, 2 ribosomal RNA gene (RNS and RNL), 25 transfer RNA (tRNA) genes and 18 open reading frames (ORFs). Phylogenetic analysis, utilizing a mitochondrial gene dataset from 15 taxa across seven families within the Agaricales order, was conducted employing the maximum-likelihood (ML) approach. This analysis identified a close phylogenetic relationship between S. imbachii and Floccularia luteovirens (Alb. & Schwein.) Pouzar 1957, positioning both within the Squamanitaceae family.

14.
Bioresour Technol ; 406: 131060, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950831

RESUMO

This study surveyed the fates of artificial sweeteners in influent, effluent, and sewage sludge (SS) in wastewater treatment plant, and investigated the effects of Micro-Kaolin (Micro-KL) and Nano-Kaolin (Nano-KL) on nitrogen transformation and sucralose (SUC) and acesulfame (ACE) degradation during SS composting. Results showed the cumulative rate of ACE and SUC in SS was ∼76 %. During SS composting, kaolin reduced NH3 emissions by 30.2-45.38 %, and N2O emissions by 38.4-38.9 %, while the Micro-KL and Nano-KL reduced nitrogen losses by 14.8 % and 12.5 %, respectively. Meanwhile, Micro-KL and Nano-KL increased ACE degradation by 76.8 % and 84.2 %, and SUC degradation by 75.3 % and 77.7 %, and significantly shifted microbial community structure. Furthermore, kaolin caused a positive association between Actinobacteria and sweetener degradation. Taken together, kaolin effectively inhibited nitrogen loss and promoted the degradation of ACE and SUC during the SS composting, which is of great significance for the removal of emerging organic pollutants in SS.

15.
Mycology ; 14(3): 264-274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583453

RESUMO

The genus Armillaria has high edible and medical values, with zones of antagonism often occurring when different species are paired in culture on agar media, while the antagonism-induced metabolic alteration remains unclear. Here, the metabolome of mycelial exudates of two Chinese Armillaria biological species, C and G, co-cultured or cultured separately was analysed to discover the candidate biomarkers and the key metabolic pathways involved in Armillaria antagonists. A total of 2,377 metabolites were identified, mainly organic acids and derivatives, lipids and lipid-like molecules, and organoheterocyclic compounds. There were 248 and 142 differentially expressed metabolites between group C-G and C, C-G, and G, respectively, and fourteen common differentially expressed metabolites including malate, uracil, Leu-Gln-Arg, etc. Metabolic pathways like TCA cycle and pyrimidine metabolism were significantly affected by C-G co-culture. Additionally, 156 new metabolites (largely organic acids and derivatives) including 32 potential antifungal compounds, primarily enriched into biosynthesis of secondary metabolites pathways were identified in C-G co-culture mode. We concluded that malate and uracil could be used as the candidate biomarkers, and TCA cycle and pyrimidine metabolism were the key metabolic pathways involved in Armillaria antagonists. The metabolic changes revealed in this study provide insights into the mechanisms underlying fungal antagonists.

16.
J Fungi (Basel) ; 9(8)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37623626

RESUMO

Morels are one of the most highly prized edible and medicinal mushrooms worldwide. Therefore, historically, there has been a large international interest in their cultivation. Numerous ecological, physiological, genetic, taxonomic, and mycochemical studies have been previously developed. At the beginning of this century, China finally achieved artificial cultivation and started a high-scale commercial development in 2012. Due to its international interest, its cultivation scale and area expanded rapidly in this country. However, along with the massive industrial scale, a number of challenges, including the maintenance of steady economic profits, arise. In order to contribute to the solution of these challenges, formal research studying selection, species recognition, strain aging, mating type structure, life cycle, nutrient metabolism, growth and development, and multi-omics has recently been boosted. This paper focuses on discussing current morel cultivation technologies, the industrial status of cultivation in China, and the relevance of basic biological research, including, e.g., the study of strain characteristics, species breeding, mating type structure, and microbial interactions. The main challenges related to the morel cultivation industry on a large scale are also analyzed. It is expected that this review will promote a steady global development of the morel industry based on permanent and robust basic scientific knowledge.

17.
IEEE Trans Neural Netw Learn Syst ; 34(10): 6940-6954, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36094994

RESUMO

Numerous electronic health records (EHRs) offer valuable opportunities for understanding patients' health status at different stages, namely health progression. Extracting the health progression patterns allows researchers to perform accurate predictive analysis of patient outcomes. However, most existing works on this task suffer from the following two limitations: 1) the diverse dependencies among heterogeneous medical entities are overlooked, which leads to the one-sided modeling of patients' status and 2) the extraction granularity of patient's health progression patterns is coarse, limiting the model's ability to accurately infer the patient's future status. To address these challenges, a pretrained Health progression network via heterogeneous medical information fusion, HealthNet, is proposed in this article. Specifically, a global heterogeneous graph in HealthNet is built to integrate heterogeneous medical entities and the dependencies among them. In addition, the proposed health progression network is designed to model hierarchical medical event sequences. By this method, the fine-grained health progression patterns of patients' health can be captured. The experimental results on real disease datasets demonstrate that HealthNet outperforms the state-of-the-art models for both diagnosis prediction task and mortality prediction task.


Assuntos
Registros Eletrônicos de Saúde , Redes Neurais de Computação , Humanos
18.
Microorganisms ; 11(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36838309

RESUMO

Morels, which belong to the Ascomycete genus Morchella, are highly valued edible fungi treasured by gourmet chefs worldwide. Some species are saprotrophic and others are able to form facultative mycorrhizal-like associations with plant roots without establishing true ectomycorrhizal symbioses. In general, it is considered that the formation of asexual spores, or mitospores, is an important step in the life cycle of morels. However, ultrastructure characterization and physiological attributes of morel mitospores have received little attention. In this contribution, the mitospores of M. sextelata were successfully induced under laboratory conditions and their ultrastructure, occurrence, germination, physiological characteristics and mating type gene structure were studied. Mitospore production was closely related to aeration, nutrition and humidity conditions. The average germination rate of mitospores on different media and under various induction stimuli was very low, with an average of 1/100,000. Based on the ultrastructure characterization, low germination rate, growth rate decline, rapid aging and mating genotyping, it was concluded that the mitospores of M. sextelata had lost their conventional function as conidia and might act more as mate sperm-like (gamete) structures. Thus, this study contributed to a deeper understanding of the life cycle of the economically and ecologically important morel fungal group.

19.
Front Plant Sci ; 14: 1134446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123847

RESUMO

Black truffles and white truffles are widely studied around the world, but their effects on plant growth and physiological responses, and on the mycorrhizosphere bacterial community of the host plant remain unclear. Here, mycorrhizal colonization of Castanopsis rockii by Tuber indicum (Chinese black truffle) and T. lijiangense (Chinese white truffle), respectively, was induced in a greenhouse study, and their effects on host growth, physiological responses and mycorrhizosphere bacterial communities were compared. The results show that colonization of both Tuber species significantly increased leaf photosynthetic rate, leaf P concentration and mycorrhizosphere acid phosphatase activity, as well as richness of mycorrhizosphere bacterial communities of C. rockii seedlings. However, T. indicum colonization on the one hand significantly decreased tartrate content, bacterial acid phosphatase, phoC gene abundance in the mycorrhizosphere, and peroxidase (POD) activity of ectomycorrhizal root tips, but on the other hand increased mycorrhizosphere pH and superoxide dismutase (SOD) of ectomycorrhizal root tips, compared to T. lijiangense colonization. Moreover, principal coordinate and ß-diversity analyses show significant differences in mycorrhizosphere bacterial community composition between T. indicum and T. lijiangese colonized C. rockii seedlings. Finally, the relative abundance of the bacterium Agromyces cerinus significantly correlated to mycorrhizosphere acid phosphatase activity and leaf P concentration, suggesting that this bacterium might play an important role in P mobilization and acquisition. Overall, these results suggest that T. indicum and T. lijiangense differently regulate their host plant's physiological responses and mycorrhizosphere bacterial community.

20.
Eur J Med Chem ; 249: 115124, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680986

RESUMO

Kirsten rat sarcoma viral (KRAS) oncogene is the most commonly mutated isoform of RAS, accounting for 85% of RAS-driven human cancers. KRAS functioning as a signaling hub participates in multiple cellular signaling pathways and regulates a variety of critical processes such as cell proliferation, differentiation, growth, metabolism and migration. Over the past decades, KRAS oncoprotein has been considered as an "undruggable" target due to its smooth surface and high GTP/GDP affinity. The breakthrough in directly targeting G12C mutated-KRAS and recently approved covalent KRASG12C inhibitors sotorasib and adagrasib broke the myth of KRAS undruggable and confirmed the directly targeting KRAS as one of the most promising strategies for the treatment of cancers. Targeting KRASG12C successfully enriched the understanding of KRAS and brought opportunities for the development of inhibitors to directly target other KRAS mutations. With the stage now set for a new era in the treatment of KRAS-driven cancers, the development of KRAS inhibitors also enters a booming epoch. In this review, we overviewed the research progress of KRAS inhibitors with the potential to treat cancers covering articles published in 2022. The design strategies, discovery processes, structure-activity relationship (SAR) studies, cocrystal structure analysis as well as in vitro and in vivo activity were highlighted with the aim of providing updated sight to accelerate the further development of more potent inhibitors targeting various mutated-KRAS with favorable drug-like properties.


Assuntos
Vírus do Sarcoma Murino de Kirsten , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Diferenciação Celular , Proliferação de Células , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA