Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Bacteriol ; 205(8): e0018723, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37439688

RESUMO

The development of novel antibiotic adjuvants is imminent because of the frequent emergence of resistance in Gram-negative bacteria, which severely restricts the efficiency and longevity of commonly used clinical antibiotics. It is reported that famotidine, a clinical inhibitor of gastric acid secretion, enhances the antibacterial activity of rifamycin antibiotics, especially rifampicin, against Gram-negative bacteria and reverses drug resistance. Studies have shown that famotidine disrupts the cell membrane of Acinetobacter baumannii and inhibits the expression of the outer membrane protein ompA gene, while causing a dissipation of the plasma membrane potential, compensatively upregulating the pH gradient and ultimately increasing the accumulation of reactive oxygen species by leading to increased bacterial mortality. In addition, famotidine also inhibited the efflux pump activity and the biofilm formation of A. baumannii. In the Galleria mellonella and mouse infection models, the combination of famotidine and rifampicin increased the survival rate of infected animals and decreased the bacterial load in mouse organs. In conclusion, famotidine has the potential to be a novel rifampicin adjuvant, providing a new option for the treatment of clinical Gram-negative bacterial infections. IMPORTANCE In this study, famotidine was discovered for the first time to have potential as an antibiotic adjuvant, enhancing the antibacterial activity of rifamycin antibiotics against A. baumannii and overcoming the limitations of drug therapy. With the discovery of novel applications for the guanidine-containing medication famotidine, the viability of screening prospective antibiotic adjuvants from guanidine-based molecules was further explored. In addition, famotidine exerts activity by affecting the OmpA protein of the cell membrane, indicating that this protein might be used as a therapeutic drug target to treat A. baumannii infections.


Assuntos
Acinetobacter baumannii , Rifampina , Animais , Camundongos , Rifampina/farmacologia , Acinetobacter baumannii/metabolismo , Famotidina/metabolismo , Estudos Prospectivos , Antibacterianos/metabolismo , Modelos Animais de Doenças , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
2.
Front Microbiol ; 14: 1144946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143537

RESUMO

Introduction: The continued emergence and spread of multidrug-resistant (MDR) bacterial pathogens require a new strategy to improve the efficacy of existing antibiotics. Proline-rich antimicrobial peptides (PrAMPs) could also be used as antibacterial synergists due to their unique mechanism of action. Methods: Utilizing a series of experiments on membrane permeability, In vitro protein synthesis, In vitro transcription and mRNA translation, to further elucidate the synergistic mechanism of OM19r combined with gentamicin. Results: A proline-rich antimicrobial peptide OM19r was identified in this study and its efficacy against Escherichia coli B2 (E. coli B2) was evaluated on multiple aspects. OM19r increased antibacterial activity of gentamicin against multidrug-resistance E. coli B2 by 64 folds, when used in combination with aminoglycoside antibiotics. Mechanistically, OM19r induced change of inner membrane permeability and inhibited translational elongation of protein synthesis by entering to E. coli B2 via intimal transporter SbmA. OM19r also facilitated the accumulation of intracellular reactive oxygen species (ROS). In animal models, OM19r significantly improved the efficacy of gentamicin against E. coli B2. Discussion: Our study reveals that OM19r combined with GEN had a strong synergistic inhibitory effect against multi-drug resistant E. coli B2. OM19r and GEN inhibited translation elongation and initiation, respectively, and ultimately affected the normal protein synthesis of bacteria. These findings provide a potential therapeutic option against multidrug-resistant E. coli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA