Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 27(35): 9124-9128, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33788984

RESUMO

Alloying platinum (Pt) with transition metals (M), as an established class of electrocatalysts, reduces the use of Pt and improves the electrocatalytic performance. However, the stability of transition metals in nanostructured platinum alloys is a fundamental and practical problem in electrocatalysis, due to leaching of transition metals under acidic operating condition. Here, a corrosion method has been developed for a Pt-Cu electrocatalyst with high activity (6.6 times that of commercial Pt/C) and excellent stability for the methanol oxidation reaction (MOR) under acidic operating conditions. The mechanism of formation has been studied, and possible mesostructured re-formation and atomic re-organization have been proposed. This work offers an effective strategy for the facile synthesis of a highly acid-stable PtM alloying and opens a door to high-performance design for electrocatalysts.

2.
Chem Commun (Camb) ; 58(49): 6882-6885, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35621036

RESUMO

Hierarchically fractal Co with highly exposed active (002) facets, possessing a higher work function and more moderate hydrogen adsorption free energy, has been synthesized via a template-free self-assembly method for the directed electron-transfer design of HER catalysts. It shows a great improvement in the HER activity in comparison with that of nanostructured Co.

3.
ACS Appl Mater Interfaces ; 11(31): 27641-27647, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31252487

RESUMO

A proof-of-concept strategy for significant enhancement of hydrogen evolution reaction (HER) performance of transition metals via construction of a metal/semiconductor Schottky junction is presented. The decoration of low-cost commercial TiO2 nanoparticles on the surface of microscale Co dendrites causes a significant charge transfer across the Co/TiO2 Schottky interface and enhances the local electron density at the Co surface, confirmed by X-ray photoelectron spectroscopy results and density functional theory calculations. The Co/TiO2 Schottky catalyst displays superior HER activity with a turnover frequency of 0.052 s-1 and an exchange current density of 79 µA cm-2, which are about 4.3 and 4.0 times greater than that of pristine Co, respectively. Moreover, the Co/TiO2 Schottky catalyst displays excellent electrochemical durability for long-term operation in both alkaline solution and high saline solution. Theoretical calculations suggest that the Schottky junction plays an important role to optimize hydrogen adsorption free energy (ΔGH*) by tuning the electronic structure, which enhances the performance for HER of the Co/TiO2 Schottky catalyst. This study of modulating the electronic structure of the catalysts via the Schottky junction could provide valuable insights for designing and synthesizing low-cost, high-performance electrocatalysts.

4.
Adv Mater ; 30(32): e1802173, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29947064

RESUMO

The homojunction of oxygen/metal vacancies and its interfacial n-p effect on the physiochemical properties are rarely reported. Interfacial n-p homojunctions of TiO2 are fabricated by directly decorating interfacial p-type titanium-defected TiO2 around n-type oxygen-defected TiO2 nanocrystals in amorphous-anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2 ; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D 1 H TQ-SQ MAS NMR are present. Amorphous-anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n-type to p-type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new "homojunction of oxygen and titanium vacancies" concept, characteristics, and mechanism are proposed at an atomic-/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA