Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(32): 17678-17688, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37527433

RESUMO

Singlet fission (SF) has been explored as a viable route to improve photovoltaic performance by producing more excitons. Efficient SF is achieved through a high degree of interchromophoric coupling that facilitates electron superexchange to generate triplet pairs. However, strongly coupled chromophores often form excimers that can serve as an SF intermediate or a low-energy trap site. The succeeding decoherence process, however, requires an optimum electronic coupling to facilitate the isolation of triplet production from the initially prepared correlated triplet pair. Conformational flexibility and dielectric modulation can provide a means to tune the SF mechanism and efficiency by modulating the interchromophoric electronic interaction. Such a strategy cannot be easily adopted in densely stacked traditional organic solids. Here, we show that the assembly of the SF-active chromophores around well-defined pores of solution-stable metal-organic frameworks (MOFs) can be a great platform for a modular SF process. A series of three new MOFs, built out from 9,10-bis(ethynylenephenyl)anthracene-derived struts, show a topology-defined packing density and conformational flexibility of the anthracene core to dictate the SF mechanism. Various steady-state and transient spectroscopic data suggest that the initially prepared singlet population can prefer either an excimer-mediated SF or a direct SF (both through a virtual charge-transfer (CT) state). These solution-stable frameworks offer the tunability of the dielectric environment to facilitate the SF process by stabilizing the CT state. Given that MOFs are a great platform for various photophysical and photochemical developments, generating a large population of long-lived triplets can expand their utilities in various photon energy conversion schemes.

2.
Angew Chem Int Ed Engl ; 62(38): e202305323, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37524654

RESUMO

High quantum yield triplets, populated by initially prepared excited singlets, are desired for various energy conversion schemes in solid working compositions like porous MOFs. However, a large disparity in the distribution of the excitonic center of mass, singlet-triplet intersystem crossing (ISC) in such assemblies is inhibited, so much so that a carboxy-coordinated zirconium heavy metal ion cannot effectively facilitate the ISC through spin-orbit coupling. Circumventing this sluggish ISC, singlet fission (SF) is explored as a viable route to generating triplets in solution-stable MOFs. Efficient SF is achieved through a high degree of interchromophoric coupling that facilitates electron super-exchange to generate triplet pairs. Here we show that a predesigned chromophoric linker with extremely poor ISC efficiency (kISC ) but E S 1 ≥ 2 E T 1 ${{E}_{{S}_{1}}\ge {2E}_{{T}_{1}}}$ form triplets in MOF in contrast to the frameworks that are built from linkers with sizable kISC but E S 1 ≤ 2 E T 1 ${{E}_{{S}_{1}}\le {2E}_{{T}_{1}}}$ . This work opens a new photophysical and photochemical avenue in MOF chemistry and utility in energy conversion schemes.

3.
J Am Chem Soc ; 144(3): 1396-1406, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35029989

RESUMO

Crystalline metal-organic frameworks (MOFs) are promising synthetic analogues of photosynthetic light-harvesting complexes (LHCs). The precise assembly of linkers (organic chromophores) around the topology-defined pores offers the evolution of unique photophysical behaviors that are reminiscence of LHCs. These include MOF excited states with photoabsorbed energy that is spatially dispersed over multiple linkers defining the molecular excitons. The multilinker molecular excitons display superradiance─a hallmark of coupled oscillators seen in LHCs─with radiative rate constant (krad) exceeding that of a single linker. Our theoretical model and experimental results on three zirconium MOFs, namely, PCN-222(Zn), NU-1000, and SIU-100, with similar topology but varying linkers suggest that the size of such molecular excitons depends on the electronic symmetry of the linker. This multilinker exciton model effectively predicts the energy transfer rate constant; corresponding single-step exciton hopping time, ranging from a few picoseconds in SIU-100 and NU-1000 to a few hundreds of picoseconds in PCN-222(Zn), matches well with the experimental data. The model also predicts the anisotropy of exciton displacement with preferential migration along the crystallographic c-axis. Overall, these findings establish various missing links defining the exciton size and dynamics in MOF-assembled linkers. The understandings will provide design principles, especially, positioning the catalysts or electrode relative to the linker orientation for low-density solar energy conversion systems.

4.
J Am Chem Soc ; 144(10): 4457-4468, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35138840

RESUMO

Tuning metal oxidation states in metal-organic framework (MOF) nodes by switching between two discrete linker photoisomers via an external stimulus was probed for the first time. On the examples of three novel photochromic copper-based frameworks, we demonstrated the capability of switching between +2 and +1 oxidation states, on demand. In addition to crystallographic methods used for material characterization, the role of the photochromic moieties for tuning the oxidation state was probed via conductivity measurements, cyclic voltammetry, and electron paramagnetic resonance, X-ray photoelectron, and diffuse reflectance spectroscopies. We confirmed the reversible photoswitching activity including photoisomerization rate determination of spiropyran- and diarylethene-containing linkers in extended frameworks, resulting in changes in metal oxidation states as a function of alternating excitation wavelengths. To elucidate the switching process between two states, the photoisomerization quantum yield of photochromic MOFs was determined for the first time. Overall, the introduced noninvasive concept of metal oxidation state modulation on the examples of stimuli-responsive MOFs foreshadows a new pathway for alternation of material properties toward targeted applications.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Metais , Oxirredução
5.
J Am Chem Soc ; 143(37): 15286-15297, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34499503

RESUMO

Photoinduced charge transfer (PCT) is a key step in the light-harvesting (LH) process producing the redox equivalents for energy conversion. However, like traditional macromolecular donor-acceptor assemblies, most MOF-derived LH systems are designed with a large ΔG0 to drive PCT. To emulate the functionality of the reaction center of the natural LH complex that drives PCT within a pair of identical chromophores producing charge carriers with maximum potentials, we prepared two electronically diverse carboxy-terminated zinc porphyrins, BFBP(Zn)-COOH and TFP(Zn)-COOH, and installed them into the hexagonal pores of NU-1000 via solvent-assisted ligand incorporation (SALI), resulting in BFBP(Zn)@NU-1000 and TFP(Zn)@NU-1000 compositions. Varying the number of trifluoromethyl groups at the porphyrin core, we tuned the ground-state redox potentials of the porphyrins within ca. 0.1 V relative to that of NU-1000, defining a small ΔG0 for PCT. For BFBP(Zn)@NU-1000, the relative ground- and excited-state redox potentials of the components facilitate an energy transfer (EnT) from NU-1000* to BFBP(Zn), forming BFBP(Zn)S1* which entails a long-lived charge-separated complex formed through an exciplex-like [BFBP(Zn)S1*-TBAPy] intermediate. Various time-resolved spectroscopic data suggest that EnT from NU-1000* may not involve a fast Förster-like resonance energy transfer (FRET) but rather through a slow [NU-1000*-BFBP(Zn)] intermediate formation. In contrast, TFP(Zn)@NU-1000 displays an efficient EnT from NU-1000* to [TFP(Zn)-TBAPy], a complex that formed at the ground state through electronic interaction, and thereon showed the excited-state feature of [TFP(Zn)-TBAPy]*. The results will help to develop synthetic LHC systems that can produce long-lived photogenerated charge carriers with high potentials, i.e., high open-circuit voltage in photoelectrochemical setups.

6.
J Am Chem Soc ; 143(7): 2908-2919, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33576621

RESUMO

Two trigonal prismatic metallacages 1 and 2 bearing triphenylamine and anthracene moieties are designed and synthesized to fabricate artificial light-harvesting systems (LHSs). These two cages are prepared via the coordination-driven self-assembly of two anthracene-triphenylamine-based tripyridyl ligand 3, three dicarboxylates, and six 90° Pt(II) acceptors. The design of the anthracene-triphenylamine chromophore makes possible the tunable excited-state property (like the emissive transition energy and lifetime) as a function of the solvent polarity, temperature, and concentration. The synergistic photophysical footprint of these metallacages, defined by their high absorptivity and emission quantum yield (QY) relative to the free ligand 3, signifies them as a superior light sensitizer component in an LHS. In the presence of the fluorescent dye Nile Red (NR) as an energy acceptor, the metallacages display efficient (>93%) excited energy transfer to NR through an apparent static quenching mechanism in viscous dimethyl sulfoxide solvent.

7.
J Am Chem Soc ; 142(25): 11192-11202, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32449353

RESUMO

Crystalline metal-organic frameworks (MOFs) can assemble chromophoric molecules into a wide range of spatial arrangements, which are controlled by the MOF topology. Like natural light-harvesting complexes (LHCs), the precise arrangement modulates interchromophoric interactions, in turn determining excitonic behavior and migration dynamics. To unveil the key factors that control efficient exciton displacements within MOFs, we first developed linkers with low electronic symmetry (as defined by large transition dipoles) and then assembled them into MOFs. These linkers possess extended conjugation along one molecular axis, engendering low optical bandgaps and improved oscillator strength for their lowest-energy transition (S0 → S1). This enhances absorption-emission spectral overlap and boosts the efficiency of Förster resonance energy transfer, which was observed experimentally by a sizable decrease in emission quantum yield (QY), accompanied by a faster population decay profile. We find that MOFs that orient these elongated linkers along their asymmetric pore channel, e.g., the hexagonal pores in an xly network, manifested >50% decrease in their emission QY with faster decay profiles relative to their corresponding solution dissolved linkers. This is due to an efficient migration of photogenerated excitons at the crystallite peripheral sites to internal sites, which was facilitated by polarized absorption-emission overlap among the parallelly aligned linkers. In contrast, symmetric MOFs, such as those with sqc-a topological net, orient elongated linkers along two perpendicular crystal axes, which hinders efficient exciton migration. The present study underscores that MOFs are promising to develop artificial LHCs, but that to achieve an efficient exciton displacement, appropriate topology-guided assembly is required to fully realize the true potential of linkers with low electronic symmetry.

8.
J Am Chem Soc ; 142(43): 18554-18564, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32981316

RESUMO

Designing new materials for the effective detoxification of chemical warfare agents (CWAs) is of current interest given the recent use of CWAs. Although halogenated boron-dipyrromethene derivatives (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BDP or BODIPY) at the 2 and 6 positions have been extensively explored as efficient photosensitizers for generating singlet oxygen (1O2) in homogeneous media, their utilization in the design of porous organic polymers (POPs) has remained elusive due to the difficulty of controlling polymerization processes through cross-coupling synthesis pathways. Our approach to overcome these difficulties and prepare halogenated BODIPY-based porous organic polymers (X-BDP-POP where X = Br or I) represents an attractive alternative through post-synthesis modification (PSM) of the parent hydrogenated polymer. Upon synthesis of both the parent polymer, H-BDP-POP, and its post-synthetically modified derivatives, Br-BDP-POP and I-BDP-POP, the BET surface areas of all POPs have been measured and found to be 640, 430, and 400 m2·g-1, respectively. In addition, the insertion of heavy halogen atoms at the 2 and 6 positions of the BODIPY unit leads to the quenching of fluorescence (both polymer and solution-phase monomer forms) and the enhancement of phosphorescence (particularly for the iodo versions of the polymers and monomers), as a result of efficient intersystem crossing. The heterogeneous photocatalytic activities of both the parent POP and its derivatives for the detoxification of the sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES), have been examined; the results show a significant enhancement in the generation of singlet oxygen (1O2). Both the bromination and iodination of H-BDP-POP served to shorten by 5-fold of the time needed for the selective and catalytic photo-oxidation of CEES to 2-chloroethyl ethyl sulfoxide (CEESO).

9.
J Am Chem Soc ; 141(42): 16849-16857, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31566956

RESUMO

Chromophore assemblies within well-defined porous coordination polymers, such as metal-organic frameworks (MOFs), can emulate the functionality of the antenna rings of chlorophylls in light-harvesting complexes (LHCs). The chemical, electronic, and structural diversities define MOFs as a promising platform where photogenerated excitons can be displaced to redox catalysts similar to the reaction center of the LHC. The precise positioning of the pigments and complementary redox units enables us to understand the charge/energy-transfer process within these crystalline solid compositions. In this study, we postsynthetically anchored tetraphenylporphyrinato zinc(II) (TPPZn)-derived complementary pigment within the 1D pores of 1,3,6,8-tetrakis(p-benzoicacid)pyrene (H4TBAPy)-derived NU-1000 MOF to form a high-density donor-acceptor system. The ground- and excited-state redox potentials of the donor and acceptor were chosen to facilitate an energy transfer (EnT) from the excited MOF (i.e., NU-1000*) to TPPZn and a charge transfer (CT) from excited porphyrin (i.e., TPPZn*). Thus, the processes depend on the excitation wavelength. The energy transfer process was spectroscopically probed by excitation-emission mapping: MOF emission was completely quenched at 460 nm, where the pyrene-centered emission was expected. Instead, the excited MOF efficiently transfers the energy to manifest a TPPZn-centered emission at 670 nm (kEnT ≈ 4.7 × 1011 s-1). The excited TPPZn pigment, with a neighboring TBAPy linker, forms an artificial "special-pair"-like system driving the charge-separation process (kCT = 1.2 × 1010 s-1). The findings demonstrate a synthetic MOF-based artificial LHC system where their well-defined structure will open up new possibilities as the separated charge can hop along the 1D pore channel for further mechanistic understanding and future developments.

10.
J Am Chem Soc ; 140(33): 10488-10496, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30040404

RESUMO

Molecular assemblies in metal-organic frameworks (MOFs) are reminiscent of natural light-harvesting (LH) systems and considered as emerging materials for energy conversion. Such applications require understanding the correlation between their excited-state properties and underlying topological net. Two chemically identical but topologically different tetraphenylpyrene (1,3,6,8-tetrakis( p-benzoicacid)pyrene; H4TBAPy)-based ZrIV MOFs, NU-901 ( scu) and NU-1000 ( csq), are chosen to computationally and spectroscopically interrogate the impact of topological difference on their excited-state electronic structures. Time-dependent density functional theory-computed transition density matrices for selected model compounds reveal that the optically relevant S1, S2, and S n states are delocalized over more than four TBAPy linkers with a maximum exciton size of ∼1.7 nm (i.e., two neighboring TBAPy linkers). Computational data further suggests the evolution of polar excitons (hole and electron residing in two different linkers); their oscillator strengths vary with the extent of interchromophoric interaction depending on their topological network. Femtosecond transient absorption (fs-TA) spectroscopic data of NU-901 highlight instantaneous spectral evolution of an intense S1 → S n transition at 750 nm, which diminishes with the emergence of a broad (580-1100 nm) induced absorption originating from a fast excimer formation. Although these ultrafast spectroscopic data reveal the first direct spectral observation of fast excimer formation (τ = 2 ps) in MOFs, the fs-TA features seen in NU-901 are clearly absent in NU-1000 and the free H4TBAPy linker. Furthermore, transient and steady-state fluorescence data collected as a function of solvent dielectrics reveal that the emissive states in both MOF samples are electronically nonpolar; however, low-lying polar excited states may get involved in the excited-state decay processes in polar solvents. The present work shows that the topological arrangement of the linkers critically controls the excited-state electronic structures.

11.
J Am Chem Soc ; 139(16): 5973-5983, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28385020

RESUMO

Metal-organic frameworks (MOFs) define emerging materials with unique optoelectronic properties that stem from the highly organized chromophoric linkers within their frameworks. The extent of ground- and excited-state interchromophoric interaction among the π-conjugated macrocyclic linkers was studied within three tetraphenyl-pyrene (1,3,6,8-tetrakis(p-benzoic acid)pyrene; H4TBAPy)-based MOFs: ROD-7 (In2(OH)2TBAPy, frz), NU-901 (scu), and NU-1000 (csq) via steady-state and time-resolved spectroscopic techniques. These experimental data along with computational results indicate that the extent of the interchromophoric interaction, leading to a reduced optical band gap, varies across the series of MOFs and is a function of the relative orientation of the TBAPy linkers determined by their respective framework topology. The trend in the S1 → S0 emission lifetime is consistent with their relative optical bandgap. Analyses of the transient emission decay profiles and time-resolved emission spectroscopic data, recorded in low dielectric media, reveal that a long-lived emissive excimer state appears ∼1850 ± 150 cm-1 lower in energy relative to their corresponding S1 → S0 transitions. The emissive contribution from this excimer state, as well as its corresponding transition energy and time constants, are also found to be dependent on MOF identity. Such variation in properties are particularly influenced by the number density of the TBAPy linkers presented by the topology of a given MOF that are primed to form such an excited state complex. The present work shows how the specific arrangement of the linkers can play a key role in the photophysical properties of MOFs.

12.
ACS Appl Mater Interfaces ; 15(47): 54702-54710, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37963227

RESUMO

Efficient management of radionuclides that are released from various processes in the nuclear fuel cycle is of significant importance. Among these nuclides, radioactive iodine (mainly 129I and 131I) is a major concern due to the risk it poses to the environment and to human health; thus, the development of materials that can capture and safely store radioactive iodine is crucial. Herein, a novel silver-thione-functionalized zeolitic imidazole framework (ZIF) was synthesized via postsynthetic modification and assessed for its iodine uptake capabilities alongside the parent ZIF-8 and intermediate materials. A solvent-assisted ligand exchange procedure was used to replace the 2-methylimidazole linkers in ZIF-8 with 2-mercaptoimidazole, forming intermediate compound ZIF-8 = S, which was reacted with AgNO3 to yield the ZIF-8 = S-Ag+ composite for iodine uptake. Despite possessing the lowest BET surface area of the derivatives, the Ag-functionalized material demonstrated superior I2 adsorption in terms of both maximum capacity (550 g I2/mol) and rapid kinetics (50% loading achieved in 5 h, saturation in 50 h) compared to that of our pristine ZIF-8, which reached 450 g I2/mol after 150 h and 50% loading in 25 h. This improvement is attributed to the presence of the Ag+ ions, which provide a strong chemical driving force to form a stable Ag-I species. The results of this study contribute to a broader understanding of the strategies that can be employed to engineer adsorbents with robust iodine uptake behavior.

13.
ACS Appl Mater Interfaces ; 15(23): 28228-28239, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37256818

RESUMO

Solar energy conversion requires the working compositions to generate photoinduced charges with high potential and the ability to deliver charges to the catalytic sites and/or external electrode. These two properties are typically at odds with each other and call for new molecular materials with sufficient conjugation to improve charge conductivity but not as much conjugation as to overly compromise the optical band gap. In this work, we developed a semiconducting metal-organic framework (MOF) prepared explicitly through metal-carbodithioate "(-CS2)nM" linkage chemistry, entailing augmented metal-linker electronic communication. The stronger ligand field and higher covalent character of metal-carbodithioate linkages─when combined with spirofluorene-derived organic struts and nickel(II) ion-based nodes─provided a stable, semiconducting 3D-porous MOF, Spiro-CS2Ni. This MOF lacks long-range ordering and is defined by a flexible structure with non-aggregated building units, as suggested by reverse Monte Carlo simulations of the pair distribution function obtained from total scattering experiments. The solvent-removed "closed pore" material recorded a Brunauer-Emmett-Teller area of ∼400 m2/g, where the "open pore" form possesses 90 wt % solvent-accessible porosity. Electrochemical measurements suggest that Spiro-CS2Ni possesses a band gap of 1.57 eV (σ = 10-7 S/cm at -1.3 V bias potential), which can be further improved by manipulating the d-electron configuration through an axial coordination (ligand/substrate), the latter of which indicates usefulness as an electrocatalyst and/or a photoelectrocatalyst (upon substrate binding). Transient-absorption spectroscopy reveals a long-lived photo-generated charge-transfer state (τCR = 6.5 µs) capable of chemical transformation under a biased voltage. Spiro-CS2Ni can endure a compelling range of pH (1-12 for weeks) and hours of electrochemical and photoelectrochemical conditions in the presence of water and organic acids. We believe this work provides crucial design principles for low-density, porous, light-energy-conversion materials.

14.
Nanoscale ; 14(45): 16994-17002, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36354367

RESUMO

Owing to their outstanding optical properties and superior physical/chemical stability, dye-doped fluorescent nanoparticles (NPs) are growing exponentially as signal labels of immunochromatographic lateral flow immunoassay (LFA) for the detection of various analytes. However, the key challenge in the design of these fluorescent NPs is to confine the fluorophores inside NPs at extreme concentrations, at which dyes tend to self-quench resulting from the formation of non-fluorescent aggregates. Looking for other advantageous nanomaterials, we propose for the first time the use of a nanosized fluorescent metal-organic framework (nanoMOF) in LFA for the detection of staphylococcal enterotoxin B (SEB) as a model analyte. Featured by the chromophore assembly, the nanoMOF exhibited a high dye loading (∼60%) and strong fluorescence intensity, which was due to the reduced self-quenching of dyes in a variety of MOF matrices. The strong green fluorescence intensity of the nanoMOF gives a high contrast against the background of the strips and the sensitivity reflected by photoluminescence was improved by the enhanced antenna effect. Furthermore, due to the high surface area for antibody stemming, the limit of detection (LOD) of the MOF based LFA for SEB detection was as low as 0.025 ng mL-1. The compatibility of the MOF based LFA with dairy samples and its stability under long-term storage conditions were also demonstrated. The integration of a nanoMOF into LFA to detect toxins could inspire the utilization of such nanomaterial-based labels in similar immunochromatographic testing methods to improve their performance.


Assuntos
Estruturas Metalorgânicas , Imunoensaio/métodos , Enterotoxinas/análise , Corantes Fluorescentes/química
15.
ACS Appl Mater Interfaces ; 14(10): 12596-12605, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35234435

RESUMO

Effective heterogeneous photocatalysts capable of detoxifying chemical threats in practical settings must exhibit outstanding device integrity. We report a copolymerization that yields robust, porous, processible, chromophoric BODIPY (BDP; boron-dipyrromethene)-containing polymers of intrinsic microporosity (BDP-PIMs). Installation of a pentafluorophenyl at the meso position of a BDP produced reactive monomer that when combined with 5,5,6,6-tetrahydroxy-3,3,3,3-tetramethyl-1,1-spirobisindane (TTSBI) and tetrafluoroterephthalonitrile (TFTPN) yields PIM-1. Postsynthetic modification of these polymers yields Br-BDP-PIM-1a and -1b─polymers containing bromine at the 2,6-positions. Remarkably, the brominated polymers display porosity and processability features similar to those of H-BDP-PIMs. Gas adsorption reveals molecular-scale porosity and Brunette-Emmet-Teller surface areas as high as 680 m2 g-1. Electronic absorption spectra reveal charge-transfer (CT) bands centered at 660 nm, while bands arising from local excitations, LE, of BDP and TFTPN units are at 530 and 430 nm, respectively. Fluorescence spectra of the polymers reveal a Förster resonance energy-transfer (FRET) pathway to BDP units when TFTPN units are excited at 430 nm; weak phosphorescence at room temperature indicates a singlet-to-triplet intersystem crossing. The low-lying triplet state is well positioned energetically to sensitize the conversion of ground-state (triplet) molecular oxygen to electronically excited singlet oxygen. Photosensitization capabilities of these polymers toward singlet-oxygen-driven detoxification of a sulfur-mustard simulant 2-chloroethyl ethyl sulfide (CEES) have been examined. While excitation of CT and LEBDP bands yields weak catalytic activity (t1/2 > 15 min), excitation to higher energy states of TFTPN induces significant increases in photoactivity (t1/2 ≅ 5 min). The increase is attributable to (i) enhanced light collection, (ii) FRET between TFTPN and BDP, (iii) the presence of heavy atoms (bromine) having large spin-orbit coupling energies that can facilitate intersystem crossing from donor-acceptor CT-, FRET-, or LE-generated BDP singlet states to BDP-related triplet states, and (iv) polymer triplet excited-state sensitization of the formation of CEES-reactive, singlet oxygen.

16.
ACS Sens ; 6(1): 220-228, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33433202

RESUMO

Paper-based rapid diagnostic tests, such as immunochromatographic assays, namely lateral flow immunoassay (LFA), are valuable alternatives for biomarker detection compared to traditional laboratory-based tests, but these assays need further refinement to consolidate their biosensing capabilities. Nanozyme integration into LFA systems may provide a reliable means of improving the analytic sensitivity of LFA tests. Due to the involvement of multiple liquid-handling steps, the quantitative accuracy is compromised, hence hindering the use of untrained personnel point-of-care use. Self-assembling allochroic nanocatalyst (SAN) assemblies satisfy these LFA quality measures by optimizing analyte-antibody reporting performance and by intrinsically catalyzing chromogen activation, thereby reducing the number of liquid handling steps involved during sample analysis. In SANs, the hydrophobic chromogens serve as peroxidase substrates that self-assemble into nanoparticles at high loading fractions. These features demonstrate the potential for SAN-LFAs to be a valuable patient point-of-care (POC) test. Herein, we describe the SAN fabrication process and employ SAN-LFAs to detect cardiac troponin I-troponin C (cTnI-TnC) and myoglobin (Myo) levels present in plasma samples. Using SAN-LFAs, the limits of detection for cTnI-TnC and Myo were 0.012 ng/mL and 0.2 ng/mL respectively. We also demonstrate SAN compatibility with blood samples and stability under long-term storage conditions. The successful utlization of SANs in LFA-based biomarker detection may inspire these nanocatalysts to be integrated into similar immunochromatographic testing methods.


Assuntos
Peroxidase , Troponina I , Humanos , Imunoensaio , Sistemas Automatizados de Assistência Junto ao Leito , Testes Imediatos
17.
Dalton Trans ; 49(37): 12892-12917, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32990707

RESUMO

Metal-organic frameworks (MOFs) have emerged as promising porous optoelectronic compositions for energy conversion and sensing applications. The enormous structural possibilities, the large variety of photo- and redox-active building blocks along with several post-synthetic functionalization strategies make MOFs an ideal platform for photochemical and photoelectrochemical developments. Because MOFs assemble all the active building units in a dense fashion, the non-aggregated yet proximally positioned species ensure efficient photon absorption to drive photoinduced charge transfer (PCT) reactions for energy conversion and sensing. Hence, understanding the PCT processes within MOFs as a function of the topological and electronic structures of the donor-acceptor (D-A) moieties can provide transformative strategies to design new low-density compositions.

18.
Adv Mater ; 32(32): e2001592, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32602131

RESUMO

Efficient heterogeneous photosensitizing materials require both large accessible surface areas and excitons of suitable energies and with well-defined spin structures. Confinement of the tetracationic cyclophane (ExBox4+ ) within a nonporous anionic polystyrene sulfonate (PSS) matrix leads to a surface area increase of up to 225 m2 g-1 in ExBox•PSS. Efficient intersystem crossing is achieved by combining the spin-orbit coupling associated to Br heavy atoms in 1,3,5,8-tetrabromopyrene (TBP), and the photoinduced electron transfer in a TBP⊂ExBox4+ supramolecular dyad. The TBP⊂ExBox4+ complex displays a charge transfer band at 450 nm and an exciplex emission at 520 nm, indicating the formation of new mixed-electronic states. The lowest triplet state (T1 , 1.89 eV) is localized on the TBP and is close in energy with the charge separated state (CT, 2.14 eV). The homogeneous and heterogeneous photocatalytic activities of the TBP⊂ExBox4+ , for the elimination of a sulfur mustard simulant, has proved to be significantly more efficient than TBP and ExBox+4 , confirming the importance of the newly formed excited-state manifold in TBP⊂ExBox4+ for the population of the low-lying T1 state. The high stability, facile preparation, and high performance of the TBP⊂ExBox•PSS nanocomposites augur well for the future development of new supramolecular heterogeneous photosensitizers using host-guest chemistry.

19.
J Phys Chem B ; 123(41): 8814-8822, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31535556

RESUMO

Metal-organic frameworks (MOFs) are an emerging class of compositions for electro- and photoelectrocatalytic energy conversion processes. Understanding and improving the charge-transport processes within these high surface area molecular redox catalyst assemblies are critical since the charge carrier conductivity is inherently limited in MOFs. Here, we examine a series of four chemically identical but structurally different hydrolytically robust ZrIV-MOFs constructed from tetrakis(4-carboxyphenyl)porphyrinato iron(III), TCPP(FeIII) to understand how their topological construction affects redox hopping conductivity. While a structural variation fixes center-to-center distances to define the hopping rate, we probe that altering the central metal spin-state can further tune the TCPP(FeIII/II) reorganization energy of the self-exchange process. Significant increase in the hopping rate was observed upon axial coordination of 1-methyl imidazole (MIM), which converts a weakly halide bound high-spin (HS) TCPP(FeIII/II) to the six-coordinated low-spin (LS) complex. Our electrochemical and resonance Raman data reveal that pore geometry that defines the Fe-Fe distance in these frameworks dictate the steric demand to accommodate two MIM-molecules, and thus, the population of LS vs HS species is a function of topology in the presence of an excess ligand.

20.
Chem Commun (Camb) ; 52(88): 13031-13034, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27752654

RESUMO

Highly ordered chromophoric linkers positioned within the metal-organic frameworks (MOFs) have the potential to mimic natural light-harvesting complexes. Herein we report topological control over the photophysical properties of MOFs via modular interchromophoric electronic coupling to manifest different steady-state singlet emission spectra and their corresponding fluorescence lifetimes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA