Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(18): e2319751121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38662548

RESUMO

Defect engineering has been widely applied in semiconductors to improve photocatalytic properties by altering the surface structures. This study is about the transformation of inactive WO3 nanosheets to a highly effective CO2-to-CH4 conversion photocatalyst by introducing surface-ordered defects in abundance. The nonstoichiometric WO3-x samples were examined by using aberration-corrected electron microscopy. Results unveil abundant surface-ordered terminations derived from the periodic {013} stacking faults with a defect density of 20.2%. The {002} surface-ordered line defects are the active sites for fixation CO2, transforming the inactive WO3 nanosheets into a highly active catalyst (CH4: O2 = 8.2: 16.7 µmol h-1). We believe that the formation of the W-O-C-W-O species is a critical step in the catalytic pathways. This work provides an atomic-level comprehension of the structural defects of catalysts for activating small molecules.

2.
Proc Natl Acad Sci U S A ; 119(18): e2202382119, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476529

RESUMO

SignificanceSeawater is one of the most abundant resources on Earth. Direct electrolysis of seawater is a transformative technology for sustainable hydrogen production without causing freshwater scarcity. However, this technology is severely impeded by a lack of robust and active oxygen evolution reaction (OER) electrocatalysts. Here, we report a highly efficient OER electrocatalyst composed of multimetallic layered double hydroxides, which affords superior catalytic performance and long-term durability for high-performance seawater electrolysis. To the best of our knowledge, this catalyst is among the most active for OER and it advances the development of seawater electrolysis technology.

3.
Chem Soc Rev ; 52(22): 7687-7706, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37877319

RESUMO

Atomically thin sheets (e.g., graphene and monolayer molybdenum disulfide) are ideal optical and reaction platforms. They provide opportunities for deciphering some important and often elusive photocatalytic phenomena related to electronic band structures and photo-charges. In parallel, in such thin sheets, fine tuning of photocatalytic properties can be achieved. These include atomic-level regulation of electronic band structures and atomic-level steering of charge separation and transfer. Herein, we review the physics and chemistry of electronic band structures and photo-charges, as well as their state-of-the-art characterization techniques, before delving into their atomic-level deciphering and mastery on the platform of atomically thin sheets.

4.
J Environ Sci (China) ; 140: 183-203, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331499

RESUMO

Photocatalytic conversion of CO2 into fuels such as CO, CH4, and CH3OH, is a promising approach for achieving carbon neutrality. Bismuth oxyhalides (BiOX, where X = Cl, Br, and I) are appropriate photocatalysts for this purpose due to the merits of visible-light-active, efficient charge separation, and easy-to-modify crystal structure and surface properties. For practical applications, multiple strategies have been proposed to develop high-efficiency BiOX-based photocatalysts. This review summarizes the development of different approaches to prepare BiOX-based photocatalysts for efficient CO2 reduction. In the review, the fundamentals of photocatalytic CO2 reduction are introduced. Then, several widely used modification methods for BiOX photocatalysts are systematacially discussed, including heterojunction construction, introducing oxygen vacancies (OVs), Bi-enrichment, heteroatom-doping, and morphology design. Finally, the challenges and prospects in the design of future BiOX-based photocatalysis for efficient CO2 reduction are examined.


Assuntos
Bismuto , Dióxido de Carbono , Carbono , Luz , Oxigênio
5.
Angew Chem Int Ed Engl ; : e202410179, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953224

RESUMO

Photocatalytic synthesis of H2O2 is an advantageous and ecologically sustainable alternative to the conventional anthraquinone process. However, achieving high conversion efficiency without sacrificial agents remains a challenge. In this study, two covalent organic frameworks (COF-O and COF-C) were prepared with identical skeletal structures but with their pore walls anchored to different alkyl chains. They were used to investigate the effect of the chemical microenvironment of pores on photocatalytic H2O2 production. Experimental results reveal a change of hydrophilicity in COF-O, leading to suppressed charge recombination, diminished charge transfer resistance, and accelerated interfacial electron transfer. An apparent quantum yield as high as 10.3% (λ = 420 nm) can be achieved with H2O and O2 through oxygen reduction reaction. This is among the highest ever reported for polymer photocatalysts. This study may provide a novel avenue for optimizing photocatalytic activity and selectivity in H2O2 generation.

6.
J Am Chem Soc ; 145(25): 14133-14142, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37317545

RESUMO

Electrocatalytic reduction of carbon dioxide into value-added chemical fuels is a promising way to achieve carbon neutrality. Bismuth-based materials have been considered as favorable electrocatalysts for converting carbon dioxide to formic acid. Moreover, size-dependent catalysis offers significant advantages in catalyzed heterogeneous chemical processes. However, the size effects of bismuth nanoparticles on formic acid production have not been fully explored. Here, we prepared Bi nanoparticles uniformly supported on porous TiO2 substrate electrocatalytic materials by in situ segregation of the Bi element from Bi4Ti3O12. The Bi-TiO2 electrocatalyst with Bi nanoparticles of 2.83 nm displays a Faradaic efficiency of greater than 90% over a wide potential range of 400 mV. Theoretical calculations have also demonstrated subtle electronic structural evolutions induced by the size variations of Bi nanoparticles, where the 2.83 nm Bi nanoparticles display the most active p-band and d-band centers to guarantee high electroactivity toward CO2RR.

7.
Environ Sci Technol ; 57(12): 5024-5033, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36892275

RESUMO

Efficient spontaneous molecular oxygen (O2) activation is an important technology in advanced oxidation processes. Its activation under ambient conditions without using solar energy or electricity is a very interesting topic. Low valence copper (LVC) exhibits theoretical ultrahigh activity toward O2. However, LVC is difficult to prepare and suffers from poor stability. Here, we first report a novel method for the fabrication of LVC material (P-Cu) via the spontaneous reaction of red phosphorus (P) and Cu2+. Red P, a material with excellent electron donating ability and can directly reduce Cu2+ in solution to LVC via forming Cu-P bonds. With the aid of the Cu-P bond, LVC maintains an electron-rich state and can rapidly activate O2 to produce ·OH. By using air, the ·OH yield reaches a high value of 423 µmol g-1 h-1, which is higher than traditional photocatalytic and Fenton-like systems. Moreover, the property of P-Cu is superior to that of classical nano-zero-valent copper. This work first reports the concept of spontaneous formation of LVC and develops a novel avenue for efficient O2 activation under ambient conditions.


Assuntos
Cobre , Peróxido de Hidrogênio , Peróxido de Hidrogênio/química , Fósforo , Oxirredução , Oxigênio
8.
Environ Res ; 226: 115594, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907342

RESUMO

Estuarine contamination by Microplastics (MPs) is a mater of serious concern since these areas offer the society valuable ecosystem, economic, and recreational services such as breeding and feeding ground for fish, carbon fixation, nutrients recycling and port development. The Meghna estuary, located along the Bengal delta coast, provides livelihoods for thousands of peoples in Bangladesh, and served as breeding ground for national fish, Hilsha shad. Therefore, knowledge and understanding on any kind of pollution including MPs of this estuary is essential. In this study, the abundance, characteristics and contamination assessment of MPs from the surface water of a Meghna estuary were investigated for the first time. The results demonstrated that MPs were present in all samples and the abundance ranged from 33.33 to 316.67 item/m3 with a mean value of 128.89 ± 67.94 item/m3. Morphological analyses resulted in four types of MPs such as fibers (87%), fragments (6%), foam (4%), and films (3%) with the majority of these being colored (62%) and smaller (<0.5 mm) in size (88%). On the other hand, FTIR analysis for chemical characteristics confirmed five types of polymers, including polythene (PE), polystyrene (PS), polythene terephthalate (PET), polypropylene (PP), and polyvinyl chloride (PVC). The area was determined to be moderately to severely contaminated with MPs based on contamination factor (CF) values (6.18 ± 2.08 to 2.50 ± 1.0) and the pollutant load index (PLI) value (1.94 ± 0.33) as these values were > 3-6 for CF, and >1 for PLI. These results can be utilized to develop policy for the protection of this important environment.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Microplásticos/análise , Plásticos , Estuários , Ecossistema , Água , Polietileno/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Peixes , Poluentes Ambientais/análise , Sedimentos Geológicos
9.
J Environ Manage ; 344: 118472, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37384995

RESUMO

Microplastics (MPs) have gained a serious attention as an emerging contaminant throughout the world because of their persistence and possible risks to aquatic ecosystems and human well-being. However, knowledge on MPs contamination from sub-tropical coastal systems is limited, and no study has been conducted on the MPs contamination in sediment from one of the highest sediment-laden estuaries, Meghna River, in the world. This is the first study to examine the quantity, morpho-chemical characteristics and contamination risk level of MPs from this large scale river. MPs were extracted from the sediment samples of 10 stations along the banks of the estuary by density separation, and then characterized using a stereomicroscope and Fourier Transform Infrared (FTIR) spectroscopy. The incidence of MPs varied from 12.5 to 55 item/kg dry sediment with an average of 28.67 ± 10.80 item/kg. The majority (78.5%) of the MPs were under 0.5 mm in size, with fibers being the most (74.1%) prevalent MPs type. Polypropylene (PP) was found to be the predominant polymer (53.4%), followed by polyethylene (PE, 20%), polystyrene (PS, 13.3%), and polyvinyl chloride (PVC, 13.3%). The highest occurrence of PP indicted the MPs in the estuary might be originated from clothing and dying industries, fishing nets, food packages, and pulp industries. The sampling stations were contaminated with MPs as shown by the contamination factor (CF) values and pollutant load index (PLI), both of which were >1. This study exposed new insights on the status of MPs in the sediments of the Meghna River, laying the groundwork for future research. The findings will contribute to estimate the global share of MPs to the marine environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/química , Plásticos , Estuários , Ecossistema , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Polipropilenos/análise
10.
Angew Chem Int Ed Engl ; 62(33): e202307236, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37349960

RESUMO

Earth's primordial atmosphere was rich in ammonia and methane. To understand the evolution of the atmosphere, these two gases were used to make photoredox-active nitrogen-doped carbon (NDC). Photocatalysts such as NDC might play an important role in the development of geological and atmospheric chemistry during the Archean era. This study describes the synthesis of NDC directly from NH3 and CH4 gases. The photocatalyst product can be used to selectively synthesize imines by photo-oxidization of amines, producing H2 O2 simultaneously in the photoreduction reaction. Our findings shed light on the chemical evolution of the Earth.

11.
Angew Chem Int Ed Engl ; 62(13): e202218016, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36593736

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDs), a rising star in the post-graphene era, are fundamentally and technologically intriguing for photocatalysis. Their extraordinary electronic, optical, and chemical properties endow them as promising materials for effectively harvesting light and catalyzing the redox reaction in photocatalysis. Here, we present a tutorial-style review of the field of 2D TMDs for photocatalysis to educate researchers (especially the new-comers), which begins with a brief introduction of the fundamentals of 2D TMDs and photocatalysis along with the synthesis of this type of material, then look deeply into the merits of 2D TMDs as co-catalysts and active photocatalysts, followed by an overview of the challenges and corresponding strategies of 2D TMDs for photocatalysis, and finally look ahead this topic.

12.
J Intern Med ; 292(6): 941-956, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35946904

RESUMO

BACKGROUND: Dyspnea is common after COVID-19. Though the underlying mechanisms are largely unknown, lung perfusion abnormalities could contribute to lingering dyspnea. OBJECTIVES: To detect pulmonary perfusion disturbances in nonhospitalized individuals with the post-COVID condition and persistent dyspnea 4-13 months after the disease onset. METHODS: Individuals with dyspnea and matched healthy controls were recruited for dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), a 6-min walk test, and an assessment of dyspnea. The DCE-MRI was quantified using two parametric values: mean time to peak (TTP) and TTP ratio, reflecting the total lung perfusion resistance and the fraction of lung with delayed perfusion, respectively. RESULTS: Twenty-eight persons with persistent dyspnea (mean age 46.5 ± 8.0 years, 75% women) and 22 controls (mean age 44.1 ± 10.8 years, 73% women) were included. There was no systematic sex difference in dyspnea. The post-COVID group had no focal perfusion deficits but had higher mean pulmonary TTP (0.43 ± 0.04 vs. 0.41 ± 0.03, p = 0.011) and TTP ratio (0.096 ± 0.052 vs. 0.068 ± 0.027, p = 0.032). Post-COVID males had the highest mean TTP of 0.47 ± 0.02 and TTP ratio of 0.160 ± 0.039 compared to male controls and post-COVID females (p = 0.001 and p < 0.001, respectively). Correlations between dyspnea and perfusion parameters were demonstrated in males (r = 0.83, p < 0.001 for mean TTP; r = 0.76, p = 0.003 for TTP ratio), but not in females. CONCLUSIONS: DCE-MRI demonstrated late contrast bolus arrival in males with post-COVID dyspnea, suggestive of primary vascular lesions or secondary effects of hypoxic vasoconstriction. Since this effect was not regularly observed in female patients, our findings suggest sex differences in the mechanisms underlying post-COVID dyspnea, which warrants further investigation in dedicated trials.


Assuntos
COVID-19 , Meios de Contraste , Feminino , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Estudos de Viabilidade , COVID-19/complicações , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem , Perfusão , Dispneia/etiologia
13.
Acta Anaesthesiol Scand ; 66(6): 759-766, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35332517

RESUMO

BACKGROUND: This is the study plan of the Karolinska NeuroCOVID study, a study of neurocognitive impairment after severe COVID-19, relating post-intensive care unit (ICU) cognitive and neurological deficits to biofluid markers and MRI. The COVID-19 pandemic has posed enormous health challenges to individuals and health-care systems worldwide. An emerging feature of severe COVID-19 is that of temporary and extended neurocognitive impairment, exhibiting a myriad of symptoms and signs. The causes of this symptomatology have not yet been fully elucidated. METHODS: In this study, we aim to investigate patients treated for severe COVID-19 in the ICU, as to describe and relate serum-, plasma- and cerebrospinal fluid-borne molecular and cellular biomarkers of immune activity, coagulopathy, cerebral damage, neuronal inflammation, and degeneration, to the temporal development of structural and functional changes within the brain as evident by serial MRI and extensive cognitive assessments at 3-12 months after ICU discharge. RESULTS: To date, we have performed 51 3-month follow-up MRIs in the ICU survivors. Of these, two patients (~4%) have had incidental findings on brain MRI findings requiring activation of the Incidental Findings Management Plan. Furthermore, the neuropsychological and neurological examinations have so far revealed varying and mixed patterns. Several patients expressed cognitive and/or mental concerns and fatigue, complaints closely related to brain fog. CONCLUSION: The study goal is to gain a better understanding of the pathological mechanisms and neurological consequences of this new disease, with a special emphasis on neurodegenerative and neuroinflammatory processes, in order to identify targets of intervention and rehabilitation.


Assuntos
COVID-19 , Pandemias , Biomarcadores , Cuidados Críticos , Humanos , Sobreviventes/psicologia
14.
BMC Pulm Med ; 22(1): 432, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414971

RESUMO

BACKGROUND: Pulmonary embolism (PE) is a common and potentially life-threatening condition. Since it is considered a 'do not miss' diagnosis, PE tends to be over-investigated beyond the evidence-based clinical decision support systems (CDSS), which in turn subjects patients to unnecessary radiation and contrast agent exposure with no apparent benefits in terms of outcome. The purpose of this study was to evaluate the yield of 'clinical hunch' (gestalt) and four CDSS: the PERC Rule, Wells score, revised Geneva score, and Years criteria. METHODS: A review was conducted on the Electronic Medical Records (EMR) of 1566 patients from the Emergency Department at a tertiary teaching hospital who underwent CTPA from the 1st of January 2018 to the 31st of December 2019. The scores for the four CDSS were calculated retrospectively from the EMR data. We considered that a CTPA had been ordered on a clinical hunch when there was no mention of CDSS in the EMR, and no D-dimer test. A bypass of CDSS was confirmed when any step of the diagnostic algorithms was not followed. RESULTS: Of the total 1566 patients who underwent CTPA, 265 (17%) were positive for PE. The diagnosis yield from the five decision groups (clinical hunch and four CDSS) was as follows-clinical hunch, 15%; PERC rule, 18% (6% when bypassed); Wells score, 19% (11% when bypassed); revised Geneva score, 26% (13% when bypassed); and YEARS criteria, 18% (6% when bypassed). CONCLUSION: Clinicians should trust the evidence-based clinical decision support systems in line with the international guidelines to diagnose PE.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Embolia Pulmonar , Humanos , Doença Aguda , Angiografia , Embolia Pulmonar/diagnóstico , Estudos Retrospectivos
15.
J Am Chem Soc ; 143(14): 5425-5437, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33794085

RESUMO

Channelrhodopsin 2 (ChR2) is the most commonly used tool in optogenetics. Because of its faster photocycle compared to wild-type (WT) ChR2, the E123T mutant of ChR2 is a useful optogenetic tool when fast neuronal stimulation is needed. Interestingly, in spite of its faster photocycle, the initial step of the photocycle in E123T (photoisomerization of retinal protonated Schiff base or RPSB) was found experimentally to be much slower than that of WT ChR2. The E123T mutant replaces the negatively charged E123 residue with a neutral T123 residue, perturbing the electric field around the RPSB. Understanding the RPSB photoisomerization mechanism in ChR2 mutants will provide molecular-level insights into how ChR2 photochemical reactivity can be controlled, which will lay the foundation for improving the design of optogenetic tools. In this work, we combine ab initio nonadiabatic dynamics simulation, excited state free energy calculation, and reaction path search to comprehensively characterize the RPSB photoisomerization mechanism in the E123T mutant of ChR2. Our simulation agrees with previous experiments in predicting a red-shifted absorption spectrum and significant slowdown of photoisomerization in the E123T mutant. Interestingly, our simulations predict similar photoisomerization quantum yields for the mutant and WT despite the differences in excited-state lifetime and absorption maximum. Upon mutation, the neutralization of the negative charge on the E123 residue increases the isomerization barrier, alters the reaction pathway, and changes the relative stability of two fluorescent states. Our findings provide new insight into the intricate role of the electrostatic environment on the RPSB photoisomerization mechanism in microbial rhodopsins.


Assuntos
Channelrhodopsins/química , Processos Fotoquímicos , Eletricidade Estática , Isomerismo , Modelos Moleculares , Conformação Proteica , Teoria Quântica
16.
Angew Chem Int Ed Engl ; 60(2): 927-936, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-32978849

RESUMO

Nitrogen fixation is an essential process for sustaining life. Tremendous efforts have been made on the photodriven fixation of nitrogen into ammonia. However, the disproportionation of dinitrogen to ammonia and nitrate under ambient conditions has remained a grand challenge. In this work, the photodriven disproportionation of nitrogen is realized in water under visible light and ambient conditions using Fe-doped TiO2 microspheres. The oxygen vacancies associated with the Fe dopants activate chemisorbed N2 molecules, which can then be fixed into NH3 with H2 O2 as the oxidation product. The generated H2 O2 thereafter oxidizes NH3 into nitrate. This disproportionation reaction can be turned to the reductive one by loading plasmonic Au nanoparticles in the doped TiO2 microspheres. The generated H2 O2 can be effectively decomposed by the Au nanoparticles, resulting in the transformation of the disproportionation reaction to the completely reductive nitrogen photofixation.

17.
J Am Chem Soc ; 142(49): 20680-20690, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33228358

RESUMO

Azobenzene is one of the most ubiquitous photoswitches in photochemistry and a prototypical model for photoisomerizing systems. Despite this, its wavelength-dependent photochemistry has puzzled researchers for decades. Upon excitation to the higher energy ππ* excited state instead of the dipole-forbidden nπ* state, the quantum yield of isomerization from trans- to cis-azobenzene is halved. The difficulties associated with unambiguously resolving this effect both experimentally and theoretically have contributed to lasting controversies regarding the photochemistry of azobenzene. Here, we systematically characterize the dynamic photoreaction pathways of azobenzene by performing first-principles simulations of the nonadiabatic dynamics following excitation to both the ππ* and the nπ* states. We demonstrate that ground-state recovery is mediated by two distinct S1 decay pathways: a reactive twisting pathway and an unreactive planar pathway. Increased preference for the unreactive pathway upon ππ* excitation largely accounts for the wavelength-dependent behavior observed in azobenzene.

18.
J Am Chem Soc ; 142(15): 7036-7046, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32223152

RESUMO

The limitations of the Haber-Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis scenarios. Ambient N2 electroreduction is a compelling alternative but is impeded by a low ammonia production rate (mostly <10 mmol gcat-1 h-1), a small partial current density (<1 mA cm-2), and a high-selectivity hydrogen-evolving side reaction. Herein, we report that room-temperature nitrate electroreduction catalyzed by strained ruthenium nanoclusters generates ammonia at a higher rate (5.56 mol gcat-1 h-1) than the Haber-Bosch process. The primary contributor to such performance is hydrogen radicals, which are generated by suppressing hydrogen-hydrogen dimerization during water splitting enabled by the tensile lattice strains. The radicals expedite nitrate-to-ammonia conversion by hydrogenating intermediates of the rate-limiting steps at lower kinetic barriers. The strained nanostructures can maintain nearly 100% ammonia-evolving selectivity at >120 mA cm-2 current densities for 100 h due to the robust subsurface Ru-O coordination. These findings highlight the potential of nitrate electroreduction in real-world, low-temperature ammonia synthesis.

19.
J Chem Phys ; 153(2): 024110, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668944

RESUMO

The study of photochemical reaction dynamics requires accurate as well as computationally efficient electronic structure methods for the ground and excited states. While time-dependent density functional theory (TDDFT) is not able to capture static correlation, complete active space self-consistent field methods neglect much of the dynamic correlation. Hence, inexpensive methods that encompass both static and dynamic electron correlation effects are of high interest. Here, we revisit hole-hole Tamm-Dancoff approximated (hh-TDA) density functional theory for this purpose. The hh-TDA method is the hole-hole counterpart to the more established particle-particle TDA (pp-TDA) method, both of which are derived from the particle-particle random phase approximation (pp-RPA). In hh-TDA, the N-electron electronic states are obtained through double annihilations starting from a doubly anionic (N+2 electron) reference state. In this way, hh-TDA treats ground and excited states on equal footing, thus allowing for conical intersections to be correctly described. The treatment of dynamic correlation is introduced through the use of commonly employed density functional approximations to the exchange-correlation potential. We show that hh-TDA is a promising candidate to efficiently treat the photochemistry of organic and biochemical systems that involve several low-lying excited states-particularly those with both low-lying ππ* and nπ* states where inclusion of dynamic correlation is essential to describe the relative energetics. In contrast to the existing literature on pp-TDA and pp-RPA, we employ a functional-dependent choice for the response kernel in pp- and hh-TDA, which closely resembles the response kernels occurring in linear response and collinear spin-flip TDDFT.

20.
J Chem Phys ; 153(2): 024707, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668923

RESUMO

Elemental red phosphorus (red P) is a new class of photocatalysts with a desirable bandgap of ∼1.7 eV and has a strong visible-light response. Here, we show that the efficiency of red P is limited by severe electron trapping at deep traps that are intrinsic to the different crystal facets of the red P. To overcome this, we synthesized the red P/RGO (reduced graphene oxide) composite in a one-step ampoule chemical vapor deposition synthesis that formed a conducive interface between the red P photocatalyst and the RGO acceptor for efficient interfacial charge transport. As substantiated through photoelectrochemical characterization and ultrafast (femtoseconds) transient absorption spectroscopy, the interfacing with RGO provided a rapid pathway for the photocharges in red P to be interfacially separated, thereby circumventing the slower the charge trapping process. As a result, up to a sevenfold increase in the photocatalytic hydrogen production rate (apparent quantum yield = 3.1% at 650 nm) was obtained for the red P/RGO relative to the pristine red P.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA