Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(37): 87913-87924, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37430081

RESUMO

Waste classification management is effective in addressing the increasing waste output and continuous deterioration of environmental conditions. The waste classification behaviour of resident is an important basis for managers to collect and allocate resources. Traditional analysis methods, such as questionnaire, have limitations considering the complexity of individual behaviour. An intelligent waste classification system (IWCS) was applied and studied in a community for 1 year. Time-based data analysis framework was constructed to describe the residents' waste sorting behaviour and evaluate the IWCS. The results showed that residents preferred to use face recognition than other modes of identification. The ratio of waste delivery frequency was 18.34% in the morning and 81.66% in the evening, respectively. The optimal time windows of disposing wastes were from 6:55 to 9:05 in the morning and from 18:05 to 20:55 in the evening which can avoid crowding. The percentage of accuracy of waste disposal increased gradually in a year. The amount of waste disposal was largest on every Sunday. The average accuracy was more than 94% based on monthly data, but the number of participating residents decreased gradually. Therefore, the study demonstrates that IWCS is a potential platform for increasing the accuracy and efficiency of waste disposal and can promote regulations implementation.


Assuntos
Reciclagem , Eliminação de Resíduos , Resíduos Sólidos , Gerenciamento de Resíduos , Resíduos de Alimentos , Resíduos Sólidos/classificação , Gerenciamento de Resíduos/métodos , China
2.
Huan Jing Ke Xue ; 44(9): 5102-5113, 2023 Sep 08.
Artigo em Zh | MEDLINE | ID: mdl-37699828

RESUMO

Microplastics (MPs) in soil have attracted extensive attention as an emerging pollutant, and the transport of MPs is affected by their own physical and chemical properties, the chemical composition of soil solutions, and soil minerals. However, in the presence of oxides, the underlying mechanism for the transport of MPs in different ionic types and ionic strengths is still not fully understood. In this study, the effects of ionic type, ionic strength, and iron oxide on the transport of polystyrene microplastics (PSMPs) with different functional groups were investigated through stability experiments and transport experiments. The colloid transport model, CD-MUSIC model, and DLVO theory were used to explore the transport mechanism. The results showed that normalized concentrations (c/c0) of PSMPs were 0.99 in the NaH2PO4 background and 0.94 in the CaCl2 background, respectively, which indicated that the strongest stability of PSMPs was observed in the former and the weakest in the latter. Different ionic types had different effects on the transport of PSMPs. For the cations Na+ and Ca2+, Ca2+ strongly inhibited PSMPs transport in pure quartz sand because of the bridging effect and strong charge neutralization effect; the recovery rate of the PSMPs in the effluent was (43.83±1.71)%, and a first-order retention coefficient on the second kinetic Site-2 (k2a) was 1.54 min-1. The presence of iron oxide enhanced the inhibition, the recovery rate of the PSMPs in the effluent decreased to (6.04±0.40)%, and k2a increased to 5.33 min-1. For the anions Cl- and PO43-, the transport of PSMPs in pure quartz sand was dominated by surface electronegativity of PSMPs, and PSMPs exhibited lower electronegativity under Cl- background and thus showed higher recovery[(92.95±0.63)%] and lower k2a (0.19 min-1). However, in the presence of iron oxides, the Zeta potential of the quartz sand surface was the controlling factor for PSMPs transport. According to results of the CD-MUSIC model, PO43- could be easily adsorbed on the iron oxide surface to form innersphere complexes, which reduced the surface electronegativity of the iron-loaded quartz sand and enhanced the transport of PSMPs, higher recovery[(76.22±1.39)%], and lower k2a (0.66 min-1). Moreover, the species of the formed innersphere complex was controlled by the PO43- concentration, and different species of innersphere complexes had distinct negative surface charges. Higher surface electronegativity of the iron-loaded quartz sand was observed under higher PO43- concentration, which was not conducive to the transport of PSMPs. Further, the transport ability of PSMPs decreased with the increase in ionic strength. Finally, the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used to calculate the variation in the primary barrier between PSMPs and the collector under the conducted experimental conditions, which helped better elucidate the transport behavior of PSMPs. The variation in the primary barrier was consistent with the transport ability of PSMPs, and a higher primary barrier indicated a larger repulsion between PSMPs and the collector, which was in favor of PSMPs transport.

3.
Environ Sci Pollut Res Int ; 30(60): 125677-125688, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38001293

RESUMO

The treatment of cooking oil wastewater is an urgent issue need to be solved. We aimed to screen for efficient oil-degrading bacteria and develop a new microbial agent for degrading waste cooking oil in oily wastewater. Three extremely effective oil-degrading bacteria, known as YZQ-1, YZQ-3, and YZQ-4, were found by the enrichment and acclimation of samples from various sources and separation using oil degradation plates. The 16S rRNA sequencing analysis and phylogenetic tree construction showed that the three strains were Bacillus tropicus, Pseudomonas multiresinivorans, and Raoultella terrigena. Under optimal degradation conditions, the maximal degradation rates were 67.30 ± 3.69%, 89.65 ± 1.08%, and 79.60 ± 5.30%, respectively, for YZQ-1, YZQ-3, and YZQ-4. Lipase activity was highest for YZQ-3, reaching 94.82 ± 12.89 U/L. The best bacterial alliance was obtained by adding equal numbers of microbial cells from the three strains. Moreover, when this bacterial alliance was applied to oily wastewater, the degradation rate of waste cooking oil was 61.13 ± 7.30% (3.67% ± 2.13% in the control group), and COD removal was 62.4% ± 5.65% (55.60% ± 0.71% in the control group) in 72 h. Microbial community analysis results showed YZQ-1 and YZQ-3 were adaptable to wastewater and could coexist with local bacteria, whereas YZQ-4 could not survive in wastewater. Therefore, the combination of YZQ-1 and YZQ-3 can efficiently degrade oil and shows great potential for oily wastewater treatment.


Assuntos
Óleos , Águas Residuárias , RNA Ribossômico 16S/metabolismo , Filogenia , Bactérias/metabolismo , Biodegradação Ambiental
4.
J Hazard Mater ; 440: 129716, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35952431

RESUMO

Microbial bioremediation offers a solution to the problem of residual antibiotics in wastewater associated with animal farms. Efficient degradation of antibiotic residues depends upon the genetic make-up of microbial degraders, which requires a comprehensive understanding of the degradation mechanisms. In this study, a novel, efficient tylosin (TYL)-degrading bacterium, Providencia stuartii TYL-Y13 (Y13) was isolated, which could completely degrade 100 mg/L TYL within 15 h under optimal operating conditions at 40 â„ƒ, pH 7.0 %, and 1 % (v/v) bacterial inoculation rate. Whole genome sequencing revealed that strain Y13 consists of a circular chromosome and two plasmids. A new biodegradation pathway of TYL including desugarification, hydrolysis, and reduction reactions was proposed through the analysis of biodegradation products. It was demonstrated that strain Y13 gradually decreased the biotoxicity of TYL and its metabolites based on the results of the ecological structural activity relationships (ECOSAR) model analysis and toxicity assessment. Moreover, Y13 promoted the reduction of the target macrolide resistance genes in wastewater and disappeared within 84 h. These results shed new light on the mechanism of TYL biodegradation and better utilization of microbes to remediate TYL contamination.


Assuntos
Tilosina , Águas Residuárias , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Biodegradação Ambiental , Farmacorresistência Bacteriana , Patrimônio Genético , Macrolídeos , Providencia , Medição de Risco , Suínos , Tilosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA