Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metab Eng ; 72: 275-288, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35429676

RESUMO

Polyhydroxyalkanoates (PHA) are a family of biodegradable and biocompatible plastics with potential to replace petroleum based plastics. Diversity of PHA monomer structures provides flexibility in material properties to suit more applications. In this study, 5-hydroxyvalerate (5HV) synthesis pathway was established based on intrinsic alcohol/aldehyde dehydrogenases. The PHA polymerase cloned from Cupriavidus necator functions to polymerize 5HV into its copolymers in ratios ranging from 8% to 32%. Elastic copolymer P(85% 3HB-co-15% 5HV) was generated with an elongation at break and a Young's modulus of 1283% and 73.1 MPa, respectively. The recombinant H. bluephagenesis was able to convert various diols including 1, 3-propanediol, 1, 4-butanediol and 1, 5-pentanediol into PHA, leading to 13 PHA polymers including transparent P(53% 3HB-co-20% 4HB-co-27% 5HV) and sticky P(3HB-co-3HP-co-4HB-co-5HV). The engineered H. bluephagenesis was successfully grown in a 7-L bioreactor to produce the highly elastic P(85% 3HB-co-15% 5HV) and the sticky P(3HB-co-3HP-co-4HB-co-5HV), demonstrating their potential for industrial scale-up.


Assuntos
Halomonas , Poli-Hidroxialcanoatos , Halomonas/genética , Halomonas/metabolismo , Hidroxibutiratos/metabolismo , Plásticos/metabolismo , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/genética , Poli-Hidroxialcanoatos/metabolismo
2.
Metab Eng ; 59: 119-130, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32119929

RESUMO

Polyhydroxyalkanoates (PHA) have found widespread medical applications due to their biocompatibility and biodegradability, while further chemical modification requires functional groups on PHA. Halomonas bluephagenesis, a non-model halophilic bacterium serving as a chassis for the Next Generation Industrial Biotechnology (NGIB), was successfully engineered to express heterologous PHA synthase (PhaC) and enoyl coenzyme-A hydratase (PhaJ) from Aeromonas hydrophila 4AK4, along with a deletion of its native phaC gene to synthesize the short chain-co-medium chain-length PHA copolymers, namely poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), poly(3-hydroxybutyrate-co-3-hydroxyhex-5-enoate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyhex-5-enoate). After optimizations of the expression cassette and ribosomal binding site combined with introduction of endogenous acyl-CoA synthetase (fadD), the resulting recombinant strain H. bluephagenesis TDR4 achieved a remarkably high 3-hydroxyhexenoate (3HHxE) molar ratio of 35% when grown on glucose and 5-hexenoic acid as co-substrates. The total ratio of side chain consisting of 3HHx and 3HHxE monomers in the terpolymer can approach 44 mol%. H. bluephagenesis TDR4 was grown to a cell dry mass (CDM) of 30 g/L containing approximately 20% poly(3-hydroxybutyrate-co-22.75 mol% 3-hydroxy-5-hexenoate) in a 48-h of open and unsterile fermentation with a 5-hexenoic acid conversion efficiency of 91%. The resulted functional PHA containing 12.5 mol% 3-hydroxy-5-hexenoate exhibits more than 1000% elongation at break. The engineered H. bluephagenesis TDR4 can be used as an experimental platform to produce functional PHA.


Assuntos
Proteínas de Bactérias , Halomonas , Engenharia Metabólica , Poli-Hidroxialcanoatos , Aeromonas hydrophila/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Halomonas/genética , Halomonas/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/genética
3.
Biomacromolecules ; 20(9): 3233-3241, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-30624051

RESUMO

Fluorescent materials play an important role in biomedical fields. However, the main types of fluorescent materials suffer from several disadvantages especially the biotoxicity, which largely restrict its wider applications in biological fields. In this study, a highly efficient rare-earth-modified fluorescent material was successfully designed and fabricated based on polyhydroxyalkanoates, which are known as biodegradable and biocompatible materials. A new Functional-PHA polymer was microbially synthesized by engineered Halomonas bluephagenesis and was used as a basal matrix to generate the rare-earth-modified PHA. N-Acetyl-l-cysteine-grafted PHA (NAL-grafted-PHA) was first produced via a UV-initiated thiol-ene click reaction and the rare earth metal ions (Eu3+ and Tb3+) were subsequently chelated onto the NAL-grafted-PHA through the coordination effect. The composite material exhibited intense photoluminescence properties under UV laser excitation, indicating the excellent features as fluorescent material. The enhanced hydrophilicity and superior biocompatibility of rare-earth-chelated PHA were confirmed, suggesting its great potential application value in biomedical fields.


Assuntos
Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Metais Terras Raras/química , Poli-Hidroxialcanoatos/química , Acetilcisteína/síntese química , Acetilcisteína/química , Materiais Biocompatíveis/síntese química , Química Click , Corantes Fluorescentes/síntese química , Halomonas/química , Halomonas/metabolismo , Poli-Hidroxialcanoatos/síntese química , Polímeros/síntese química , Polímeros/química , Compostos de Sulfidrila/química
4.
Nat Commun ; 12(1): 1513, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686068

RESUMO

3-Hydroxypropionic acid (3HP), an important three carbon (C3) chemical, is designated as one of the top platform chemicals with an urgent need for improved industrial production. Halomonas bluephagenesis shows the potential as a chassis for competitive bioproduction of various chemicals due to its ability to grow under an open, unsterile and continuous process. Here, we report the strategy for producing 3HP and its copolymer poly(3-hydroxybutyrate-co-3-hydroxypropionate) (P3HB3HP) by the development of H. bluephagenesis. The transcriptome analysis reveals its 3HP degradation and synthesis pathways involving endogenous synthetic enzymes from 1,3-propanediol. Combing the optimized expression of aldehyde dehydrogenase (AldDHb), an engineered H. bluephagenesis strain of whose 3HP degradation pathway is deleted and that overexpresses alcohol dehydrogenases (AdhP) on its genome under a balanced redox state, is constructed with an enhanced 1.3-propanediol-dependent 3HP biosynthetic pathway to produce 154 g L-1 of 3HP with a yield and productivity of 0.93 g g-1 1,3-propanediol and 2.4 g L-1 h-1, respectively. Moreover, the strain could also accumulate 60% poly(3-hydroxybutyrate-co-32-45% 3-hydroxypropionate) in the dry cell mass, demonstrating to be a suitable chassis for hyperproduction of 3HP and P3HB3HP.


Assuntos
Vias Biossintéticas , Halomonas/genética , Halomonas/metabolismo , Ácido Láctico/análogos & derivados , Ácido Láctico/biossíntese , Engenharia Metabólica , Proteínas de Bactérias/metabolismo , Biopolímeros/metabolismo , Vias Biossintéticas/genética , Edição de Genes , Regulação Bacteriana da Expressão Gênica , Halomonas/enzimologia , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Propilenoglicóis/metabolismo
5.
Biotechnol J ; 14(9): e1800437, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30927495

RESUMO

The chemical industry has made a contribution to modern society by providing cost-competitive products for our daily use. However, it now faces a serious challenge regarding environmental pollutions and greenhouse gas emission. With the rapid development of molecular biology, biochemistry, and synthetic biology, industrial biotechnology has evolved to become more efficient for production of chemicals and materials. However, in contrast to chemical industries, current industrial biotechnology (CIB) is still not competitive for production of chemicals, materials, and biofuels due to their low efficiency and complicated sterilization processes as well as high-energy consumption. It must be further developed into "next-generation industrial biotechnology" (NGIB), which is low-cost mixed substrates based on less freshwater consumption, energy-saving, and long-lasting open continuous intelligent processing, overcoming the shortcomings of CIB and transforming the CIB into competitive processes. Contamination-resistant microorganism as chassis is the key to a successful NGIB, which requires resistance to microbial or phage contaminations, and available tools and methods for metabolic or synthetic biology engineering. This review proposes a list of contamination-resistant bacteria and takes Halomonas spp. as an example for the production of a variety of products, including polyhydroxyalkanoates under open- and continuous-processing conditions proposed for NGIB.


Assuntos
Biotecnologia/métodos , Biologia Sintética/métodos , Fermentação/fisiologia , Halomonas/metabolismo , Poli-Hidroxialcanoatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA