Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 17(38): e2102090, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34382332

RESUMO

Organic-inorganic metal halide perovskites are regarded as one of the most promising candidates in the photovoltaic field, but simultaneous realization of high efficiency and long-term stability is still challenging. Here, a one-step solution-processing strategy is demonstrated for preparing efficient and stable inverted methylammonium lead iodide (MAPbI3 ) perovskite solar cells (PSCs) by incorporating a series of organic molecule dopants of fluorophenylboronic acids (F-PBAs) into perovskite films. Studies have shown that the F-PBA dopant acts as a cross-linker between neighboring perovskite grains through hydrogen bonds and coordination bonds between F-PBA and perovskite structures, yielding high-quality perovskite crystalline films with both improved crystallinity and reduced defect densities. Benefiting from the repaired grain boundaries of MAPbI3 with the organic cross-linker, the inverted PSCs exhibit a remarkably enhanced performance from 16.4% to approximately 20%. Meanwhile, the F-PBA doped devices exhibit enhanced moisture/thermal/light stability, and specially retain 80% of their initial power conversion efficiencies after more than two weeks under AM 1.5G one-sun illumination. This work highlights the impressive advantages of the perovskite crystal cross-linking strategy using organic molecules with strong intermolecular interactions, providing an efficient route to prepare high-performance and stable planar PSCs.

2.
J Phys Chem Lett ; : 5116-5122, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35657660

RESUMO

Structural defects in the bulk and on the surface of the perovskite layer serving as trap sites induce nonradiative recombination losses, limiting the performance improvement of perovskite solar cells (PSCs). Herein, we report a trometamol-induced dual passivation (TIDP) strategy to fix both bulk and surface defects of perovskites, where the trometamol molecule can simultaneously act as chemical additive and surface-modification agent. Studies show that trometamol as an additive can effectively reduce ionic defects and enhance the grain size of perovskites through Pb2+/-NH2 coordination bonds and I-/-OH hydrogen bonds. As a surface-modification agent, trometamol further passivates ionic defects at the upper surface of the perovskite layer. As a result of the TIDP approach, a remarkable efficiency augmentation from 17.25% to 19.17% and an optimized thermal stability under inert conditions have been realized. These results highlight the importance of the TIDP strategy in perovskite defect management for excellent photovoltaic properties, facilitating the fabrication of high-performance PSCs.

3.
Front Chem ; 8: 399, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528929

RESUMO

Trap-assisted recombination loss in the cathode buffer layers (CBLs) is detrimental to the electron extraction process and severely restricts the power conversion efficiencies (PCEs) of organic solar cells (OSCs). Herein, a novel organic-inorganic hybrid film composed of zinc oxide (ZnO) and 2,3,5,6-tetrafluoro-7,7,8, 8-tetracyanoquinodimethane (F4TCNQ) is designed to fill the intrinsic charge traps of ZnO-based CBLs by doping F4TCNQ for high-performance inverted OSCs. Thus, constructed ZnO:F4TCNQ hybrid film exhibits enhanced surface hydrophobicity and adjustable energy levels, providing favorable interfacial condition for electron extraction process. Consequently, trap-assisted recombination loss in the CBLs was efficiently suppressed, leading to the significantly improved fill factor and PCEs of both fullerene- and non-fullerene-based OSCs using the ZnO:F4TCNQ hybrid CBLs. This work illustrates a convenient organic acceptor doping approach to suppress the internal charge traps of traditional inorganic CBLs, which will shed new light on the fabrication of high-performance CBLs with facile electron extraction processes in inverted OSC devices.

4.
Ying Yong Sheng Tai Xue Bao ; 22(1): 171-80, 2011 Jan.
Artigo em Zh | MEDLINE | ID: mdl-21548305

RESUMO

In order to understand the landscape pattern gradient dynamics and desakota features in rapid urbanization area, this paper took the rapidly urbanizing Panyu District of Guangzhou City as a case, and analyzed its land use and land cover data, based on four Landsat TM images from 1990 to 2008. With the combination of gradient analysis and landscape pattern analysis, and by using the landscape indices in both class and landscape scales, the spatial dynamics and desakota feature of this rapidly urbanizing district were quantified. In the study district, there was a significant change in the landscape pattern, and a typical desakota feature presented along buffer gradient zones. Urban landscape increased and expanded annually, accompanied with serious fragmentation of agricultural landscape. The indices patch density, contagion, and landscape diversity, etc., changed regularly in the urbanization gradient, and the peak of landscape indices appeared in the gradient zone of 4-6 km away from the urban center. The landscape patterns at time series also reflected the differences among the dynamics in different gradient zones. The landscape pattern in desakota region was characterized by complex patch shape, high landscape diversity and fragmentation, and remarkable landscape dynamics. The peaks of landscape indices spread from the urban center to border areas, and desakota region was expanding gradually. The general trend of spatiotemporal dynamics in desakota region and its driving forces were discussed, which could be benefit to the regional land use policy-making and sustainable development planning.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Ecossistema , Planejamento Ambiental , Árvores/crescimento & desenvolvimento , Urbanização , China , Planejamento de Cidades , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA