Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Development ; 148(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34940839

RESUMO

It is more than 25 years since the discovery that kinesin 1 is phosphorylated by several protein kinases. However, fundamental questions still remain as to how specific protein kinase(s) contribute to particular motor functions under physiological conditions. Because, within an whole organism, kinase cascades display considerable crosstalk and play multiple roles in cell homeostasis, deciphering which kinase(s) is/are involved in a particular process has been challenging. Previously, we found that GSK3ß plays a role in motor function. Here, we report that a particular site on kinesin 1 motor domain (KHC), S314, is phosphorylated by GSK3ß in vivo. The GSK3ß-phosphomimetic-KHCS314D stalled kinesin 1 motility without dissociating from microtubules, indicating that constitutive GSK3ß phosphorylation of the motor domain acts as a STOP. In contrast, uncoordinated mitochondrial motility was observed in CRISPR/Cas9-GSK3ß non-phosphorylatable-KHCS314A Drosophila larval axons, owing to decreased kinesin 1 attachment to microtubules and/or membranes, and reduced ATPase activity. Together, we propose that GSK3ß phosphorylation fine-tunes kinesin 1 movement in vivo via differential phosphorylation, unraveling the complex in vivo regulatory mechanisms that exist during axonal motility of cargos attached to multiple kinesin 1 and dynein motors.


Assuntos
Movimento Celular/genética , Proteínas de Drosophila/genética , Glicogênio Sintase Quinase 3 beta/genética , Cinesinas/genética , Microtúbulos/genética , Adenosina Trifosfatases/genética , Animais , Transporte Axonal/genética , Axônios/metabolismo , Sistemas CRISPR-Cas/genética , Movimento Celular/fisiologia , Drosophila melanogaster/genética , Dineínas/genética , Larva/genética , Neurônios/metabolismo , Fosforilação/genética , Domínios Proteicos/genética
2.
Hum Mol Genet ; 27(17): 2986-3001, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790963

RESUMO

Neurons require intracellular transport of essential components for function and viability and defects in transport has been implicated in many neurodegenerative diseases including Alzheimer's disease (AD). One possible mechanism by which transport defects could occur is by improper regulation of molecular motors. Previous work showed that reduction of presenilin (PS) or glycogen synthase kinase 3 beta (GSK3ß) stimulated amyloid precursor protein vesicle motility. Excess GSK3ß caused transport defects and increased motor binding to membranes, while reduction of PS decreased active GSK3ß and motor binding to membranes. Here, we report that functional PS and the catalytic loop region of PS is essential for the rescue of GSK3ß-mediated axonal transport defects. Disruption of PS loop (PSΔE9) or expression of the non-functional PS variant, PSD447A, failed to rescue axonal blockages in vivo. Further, active GSK3ß associated with and phosphorylated kinesin-1 in vitro. Our observations together with previous work that showed that the loop region of PS interacts with GSK3ß propose a scaffolding mechanism for PS in which the loop region sequesters GSK3ß away from motors for the proper regulation of motor function. These findings are important to uncouple the complex regulatory mechanisms that likely exist for motor activity during axonal transport in vivo.


Assuntos
Transporte Axonal , Axônios/fisiologia , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Cinesinas/metabolismo , Presenilina-1/metabolismo , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Dineínas/genética , Feminino , Glicogênio Sintase Quinase 3 beta/genética , Cinesinas/genética , Masculino , Mutação , Neurônios/citologia , Neurônios/fisiologia , Fosforilação , Presenilina-1/genética
3.
Development ; 141(6): 1332-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24553286

RESUMO

We previously identified a Drosophila maternal effect-lethal mutant named 'no poles' (nopo). Embryos from nopo females undergo mitotic arrest with barrel-shaped, acentrosomal spindles during the rapid cycles of syncytial embryogenesis because of activation of a Chk2-mediated DNA checkpoint. NOPO is the Drosophila homolog of human TNF receptor associated factor (TRAF)-interacting protein (TRIP), which has been implicated in TNF signaling. NOPO and TRIP contain RING domains closely resembling those of known E3 ubiquitin ligases. We herein sought to elucidate the mechanism by which TRIP/NOPO promotes genomic stability by performing a yeast two-hybrid screen to identify potential substrates/interactors. We identified members of the Y-family of DNA polymerases that facilitate replicative bypass of damaged DNA (translesion synthesis) as TRIP interactors. We show that TRIP and NOPO co-immunoprecipitate with human and Drosophila Polη, respectively, from cultured cells. We generated a null mutation in Drosophila Polη (dPolη) and found that dPolη-derived embryos have increased sensitivity to ultraviolet irradiation and exhibit nopo-like mitotic spindle defects. dPolη and nopo interact genetically in that overexpression of dPolη in hypomorphic nopo-derived embryos suppresses nopo phenotypes. We observed enhanced ubiquitylation of Polη by TRIP and NOPO E3 ligases in human cells and Drosophila embryos, respectively, and show that TRIP promotes hPolη localization to nuclear foci in human cells. We present a model in which TRIP/NOPO ubiquitylates Polη to positively regulate its activity in translesion synthesis.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Animais Geneticamente Modificados , Dano ao DNA , DNA Polimerase Dirigida por DNA/deficiência , DNA Polimerase Dirigida por DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Instabilidade Genômica , Células HeLa , Humanos , Modelos Biológicos , Mutação , Transdução de Sinais , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
4.
PLoS Genet ; 9(7): e1003619, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874221

RESUMO

Signaling levels within sensory neurons must be tightly regulated to allow cells to integrate information from multiple signaling inputs and to respond to new stimuli. Herein we report a new role for the cGMP-dependent protein kinase EGL-4 in the negative regulation of G protein-coupled nociceptive chemosensory signaling. C. elegans lacking EGL-4 function are hypersensitive in their behavioral response to low concentrations of the bitter tastant quinine and exhibit an elevated calcium flux in the ASH sensory neurons in response to quinine. We provide the first direct evidence for cGMP/PKG function in ASH and propose that ODR-1, GCY-27, GCY-33 and GCY-34 act in a non-cell-autonomous manner to provide cGMP for EGL-4 function in ASH. Our data suggest that activated EGL-4 dampens quinine sensitivity via phosphorylation and activation of the regulator of G protein signaling (RGS) proteins RGS-2 and RGS-3, which in turn downregulate Gα signaling and behavioral sensitivity.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas Quinases Dependentes de GMP Cíclico/genética , GMP Cíclico/metabolismo , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Fosforilação , Proteínas RGS/genética , Proteínas RGS/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/genética
5.
Proteomics ; 12(22): 3304-14, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22997150

RESUMO

Protein arginine methylation is a PTM catalyzed by an evolutionarily conserved family of enzymes called protein arginine methyltransferases (PRMTs), with PRMT1 being the most conserved member of this enzyme family. This modification has emerged to be an important regulator of protein functions. To better understand the role of PRMTs in cellular pathways and functions, we have carried out a proteomic profiling experiment to comprehensively identify the physical interactors of Hmt1, the budding yeast homolog for human PRMT1. Using a dual-enzymatic digestion linear trap quadrupole/Orbitrap proteomic strategy, we identified a total of 108 proteins that specifically copurify with Hmt1 by tandem affinity purification. A reverse coimmunoprecipitation experiment was used to confirm Hmt1's physical association with Bre5, Mtr4, Snf2, Sum1, and Ssd1, five proteins that were identified as Hmt1-specific interactors in multiple biological replicates. To determine whether the identified Hmt1-interactors had the potential to act as an Hmt1 substrate, we used published bioinformatics algorithms that predict the presence and location of potential methylarginines for each identified interactor. One of the top hits from this analysis, Snf2, was experimentally confirmed as a robust substrate of Hmt1 in vitro. Overall, our data provide a feasible proteomic approach that aid in the better understanding of PRMT1's roles within a cell.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteína-Arginina N-Metiltransferases/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Arginina/química , Arginina/metabolismo , Simulação por Computador , Metilação , Dados de Sequência Molecular , Proteína-Arginina N-Metiltransferases/química , Proteoma/análise , Proteoma/química , Proteínas Repressoras/química , Proteínas de Saccharomyces cerevisiae/química , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
6.
BMC Genomics ; 13: 728, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23268696

RESUMO

BACKGROUND: Protein arginine methylation is a post-translational modification involved in important biological processes such as transcription and RNA processing. This modification is catalyzed by both type I and II protein arginine methyltransferases (PRMTs). One of the most conserved type I PRMTs is PRMT1, the homolog of which is Hmt1 in Saccharomyces cerevisiae. Hmt1 has been shown to play a role in various gene expression steps, such as promoting the dynamics of messenger ribonucleoprotein particle (mRNP) biogenesis, pre-mRNA splicing, and silencing of chromatin. To determine the full extent of Hmt1's involvement during gene expression, we carried out a genome-wide location analysis for Hmt1. RESULTS: A comprehensive genome-wide binding profile for Hmt1 was obtained by ChIP-chip using NimbleGen high-resolution tiling microarrays. Of the approximately 1000 Hmt1-binding sites found, the majority fall within or proximal to an ORF. Different occupancy patterns of Hmt1 across genes with different transcriptional rates were found. Interestingly, Hmt1 occupancy is found at a number of other genomic features such as tRNA and snoRNA genes, thereby implicating a regulatory role in the biogenesis of these non-coding RNAs. RNA hybridization analysis shows that Hmt1 loss-of-function mutants display higher steady-state tRNA abundance relative to the wild-type. Co-immunoprecipitation studies demonstrate that Hmt1 interacts with the TFIIIB component Bdp1, suggesting a mechanism for Hmt1 in modulating RNA Pol III transcription to regulate tRNA production. CONCLUSIONS: The genome-wide binding profile of Hmt1 reveals multiple potential new roles for Hmt1 in the control of eukaryotic gene expression, especially in the realm of non-coding RNAs. The data obtained here will provide an important blueprint for future mechanistic studies on the described occupancy relationship for genomic features bound by Hmt1.


Assuntos
Genômica , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Biocatálise , Mutação , Motivos de Nucleotídeos , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta/genética , Ligação Proteica , Proteína-Arginina N-Metiltransferases/deficiência , Proteína-Arginina N-Metiltransferases/genética , RNA Nucleolar Pequeno/genética , RNA de Transferência/biossíntese , RNA de Transferência/genética , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIIB/metabolismo
7.
Life Sci Alliance ; 2(3)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31160378

RESUMO

Protein arginine methylation is an important means by which protein function can be regulated. In the budding yeast, this modification is catalyzed by the major protein arginine methyltransferase Hmt1. Here, we provide evidence that the Hmt1-mediated methylation of Rpc31, a subunit of RNA polymerase III, plays context-dependent roles in tRNA gene transcription: under conditions optimal for growth, it positively regulates tRNA gene transcription, and in the setting of stress, it promotes robust transcriptional repression. In the context of stress, methylation of Rpc31 allows for its optimal interaction with RNA polymerase III global repressor Maf1. Interestingly, mammalian Hmt1 homologue is able to methylate one of Rpc31's human homologue, RPC32ß, but not its paralogue, RPC32α. Our data led us to propose an efficient model whereby protein arginine methylation facilitates metabolic economy and coordinates protein-synthetic capacity.


Assuntos
Arginina/metabolismo , RNA de Transferência , Estresse Fisiológico/genética , Transcrição Gênica , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Metilação , Mutação , Ligação Proteica , Subunidades Proteicas/metabolismo , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Polimerase III/química , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
G3 (Bethesda) ; 8(7): 2389-2398, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29760200

RESUMO

G protein-coupled receptors are 7-pass transmembrane receptors that couple to heterotrimeric G proteins to mediate cellular responses to a diverse array of stimuli. Understanding the mechanisms that regulate G protein-coupled receptors is crucial to manipulating their signaling for therapeutic benefit. One key regulatory mechanism that contributes to the functional diversity of many signaling proteins is post-translational modification. Whereas phosphorylation remains the best studied of such modifications, arginine methylation by protein arginine methyltransferases is emerging as a key regulator of protein function. We previously published the first functional evidence that arginine methylation of G protein-coupled receptors modulates their signaling. We report here a third receptor that is regulated by arginine methylation, the Caenorhabditis elegans SER-2 tyramine receptor. We show that arginines within a putative methylation motif in the third intracellular loop of SER-2 are methylated by PRMT5 in vitro Our data also suggest that this modification enhances SER-2 signaling in vivo to modulate animal behavior. The identification of a third G protein-coupled receptor to be functionally regulated by arginine methylation suggests that this post-translational modification may be utilized to regulate signaling through a broad array of G protein-coupled receptors.


Assuntos
Comportamento Animal , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Receptores de Amina Biogênica/metabolismo , Animais , Animais Geneticamente Modificados , Arginina , Humanos , Locomoção/genética , Metilação , Transdução de Sinais
9.
Mol Syst Biol ; 2: 65, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17130867

RESUMO

Regulation of eukaryotic gene expression depends on groups of related proteins acting at the levels of chromatin organization, transcriptional initiation, RNA processing, and nuclear transport. However, a unified understanding of how these different levels of transcriptional control interact has been lacking. Here, we combine genome-wide protein-DNA binding data from multiple sources to infer the connections between functional groups of regulators in Saccharomyces cerevisiae. Our resulting transcriptional network uncovers novel biological relationships; supporting experiments confirm new associations between actively transcribed genes and Sir2 and Esc1, two proteins normally linked to silencing chromatin. Analysis of the regulatory network also reveals an elegant architecture for transcriptional control. Using communication theory, we show that most protein regulators prefer to form modules within their functional class, whereas essential proteins maintain the sparse connections between different classes. Moreover, we provide evidence that communication between different regulatory groups improves the robustness and adaptivity of the cell.


Assuntos
Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Transcrição Gênica , Histona Desacetilases/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2 , Sirtuínas/metabolismo
10.
Biochim Biophys Acta Gene Regul Mech ; 1860(6): 730-739, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28392442

RESUMO

Protein arginine methylation occurs on spliceosomal components and spliceosome-associated proteins, but how this modification contributes to their function in pre-mRNA splicing remains sparse. Here we provide evidence that protein arginine methylation of the yeast SR-/hnRNP-like protein Npl3 plays a role in facilitating efficient splicing of the SUS1 intron that harbors a non-consensus 5' splice site and branch site. In yeast cells lacking the major protein arginine methyltransferase HMT1, we observed a change in the co-transcriptional recruitment of the U1 snRNP subunit Snp1 and Npl3 to pre-mRNAs harboring both consensus (ECM33 and ASC1) and non-consensus (SUS1) 5' splice site and branch site. Using an Npl3 mutant that phenocopies wild-type Npl3 when expressed in Δhmt1 cells, we showed that the arginine methylation of Npl3 is responsible for this. Examination of pre-mRNA splicing efficiency in these mutants reveals the requirement of Npl3 methylation for the efficient splicing of SUS1 intron 1, but not of ECM33 or ASC1. Changing the 5' splice site and branch site in SUS1 intron 1 to the consensus form restored splicing efficiency in an Hmt1-independent manner. Results from biochemical studies show that methylation of Npl3 promotes its optimal association with the U1 snRNP through its association with the U1 snRNP subunit Mud1. Based on these data, we propose a model in which Hmt1, via arginine methylation of Npl3, facilitates U1 snRNP engagement with the pre-mRNA to promote usage of non-consensus splice sites by the splicing machinery.


Assuntos
Íntrons , Proteínas Nucleares/metabolismo , Splicing de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arginina/genética , Arginina/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metilação , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
12.
Int J Parasitol ; 36(10-11): 1217-26, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16753168

RESUMO

In kinetoplastids a 39-nucleotide spliced leader RNA is trans-spliced to the 5' end of nuclear mRNAs before they can be translated, thus the spliced leader is central to gene expression in kinetoplastid biology. The spliced leader RNA genes in Leishmania tarentolae contain promoters with important sites at approximately -60 and -30. A complex forms specifically on the -60 element as shown by electrophoretic mobility shift. The -60 shift complex has an estimated mass of 159 kDa. An L. tarentolae homologue of TATA-binding protein, LtTBP, co-fractionates with the -60 shift complex. Inclusion of anti-LtTBP antiserum in the shift assay disrupts the shift, indicating that LtTBP is a component of the complex that interacts with the TATA-less -60 element of the spliced leader RNA gene promoter. Both LtTBP and LtSNAP50 are found near the spliced leader RNA gene promoter and the promoters important for tRNAAla and/or U2 snRNA gene transcription, as demonstrated by chromatin immunoprecipitation. The LtTBP appears to interact with a subset of promoters in kinetoplastids with an affinity for short transcription units.


Assuntos
Leishmania/genética , Regiões Promotoras Genéticas , RNA de Protozoário/análise , Proteína de Ligação a TATA-Box/fisiologia , Animais , Sequência de Bases , Imunoprecipitação da Cromatina , Cromatografia em Gel , Ensaio de Desvio de Mobilidade Eletroforética , Dados de Sequência Molecular , RNA Polimerase I/genética , RNA Polimerase III/genética , RNA Líder para Processamento , Fatores de Transcrição/genética
14.
Sci Signal ; 8(402): ra115, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26554819

RESUMO

Protein arginine methylation regulates diverse functions of eukaryotic cells, including gene expression, the DNA damage response, and circadian rhythms. We showed that arginine residues within the third intracellular loop of the human D2 dopamine receptor, which are conserved in the DOP-3 receptor in the nematode Caenorhabditis elegans, were methylated by protein arginine methyltransferase 5 (PRMT5). By mutating these arginine residues, we further showed that their methylation enhanced the D2 receptor-mediated inhibition of cyclic adenosine monophosphate (cAMP) signaling in cultured human embryonic kidney (HEK) 293T cells. Analysis of prmt-5-deficient worms indicated that methylation promoted the dopamine-mediated modulation of chemosensory and locomotory behaviors in C. elegans through the DOP-3 receptor. In addition to delineating a previously uncharacterized means of regulating GPCR (heterotrimeric guanine nucleotide-binding protein-coupled receptor) signaling, these findings may lead to the development of a new class of pharmacological therapies that modulate GPCR signaling by changing the methylation status of these key proteins.


Assuntos
Proteína-Arginina N-Metiltransferases/metabolismo , Receptores de Dopamina D2/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Arginina/química , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Biologia Computacional , Sequência Conservada , Dopamina/metabolismo , Dopamina/farmacologia , Células HEK293 , Humanos , Locomoção/efeitos dos fármacos , Locomoção/genética , Locomoção/fisiologia , Metilação , Dados de Sequência Molecular , Octanóis/farmacologia , Odorantes , Proteína-Arginina N-Metiltransferases/deficiência , Proteína-Arginina N-Metiltransferases/genética , Receptores de Dopamina D2/química , Receptores de Dopamina D2/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais
15.
Int J Parasitol ; 32(11): 1411-22, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12350376

RESUMO

A second distinct array of spliced leader RNA genes has been found in several Leishmania species particular to lizards. This is the first report of two non-allelic arrays of spliced leader RNA genes within a species cell line. The arrays are identical to each other in their transcribed spliced leader RNA gene sequences, but variable in their non-transcribed spacer sequences. In the two arrays from Leishmania tarentolae UC strain the promoter regions are similar, but not identical, at positions shown previously to be critical for spliced leader RNA transcription. These arrays contain similar numbers of genes and are both transcribed in L. tarentolae in vitro transcription extract as well as in vivo. The -66/-58 regions of both genes, which contain an element of the spliced leader RNA gene promoter, bind proteins likely to be transcription factors in a specific manner. A survey of lizard Leishmania spp. revealed a second spliced leader RNA gene array in three of four species. Phylogenetic analyses of these sequences with each other and with the spliced leader RNA gene sequences of non-lizard Leishmania spp. and their near-relatives showed that the lizard groups are more closely related to each other than to arrays from other Leishmania spp. As the transcripts of the two arrays are identical, they may co-exist to fulfil the substantial requirement for spliced leader RNA production; however, they have the potential for differential usage modulated by their distinct promoter elements. The presence of two distinct spliced leader RNA gene arrays within a single cell type may represent dissociated evolution of two redundant loci, or a previously unsuspected level of control in the post-transcriptional gene expression within some kinetoplastids.


Assuntos
Genes de Protozoários/genética , Leishmania/classificação , Leishmania/genética , Lagartos/parasitologia , RNA Líder para Processamento/genética , Alelos , Animais , Sequência de Bases , Linhagem Celular , DNA Intergênico/genética , DNA de Protozoário/genética , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Dados de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA de Protozoário/genética , Elementos de Resposta/genética , Especificidade da Espécie , Transcrição Gênica/genética
16.
Methods Mol Biol ; 1163: 229-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24841312

RESUMO

Protein arginine methylation has emerged to be an important regulator of cellular protein functions. Techniques that uncover the presence of methylarginines on a protein provide an important step towards understanding the functional role of arginine methylation. Here, we describe several common methods used to detect the presence of protein arginine methylation in Saccharomyces cerevisiae.


Assuntos
Arginina/metabolismo , Biologia Molecular/métodos , Proteínas Repressoras/isolamento & purificação , Sequência de Aminoácidos , Metilação , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
PLoS One ; 7(8): e44656, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22953000

RESUMO

In the yeast Saccharomyces cerevisiae, the establishment and maintenance of silent chromatin at the telomere requires a delicate balance between opposing activities of histone modifying enzymes. Previously, we demonstrated that the protein arginine methyltransferase Hmt1 plays a role in the formation of yeast silent chromatin. To better understand the nature of the Hmt1 interactions that contribute to this phenomenon, we carried out a systematic reverse genetic screen using a null allele of HMT1 and the synthetic genetic array (SGA) methodology. This screen revealed interactions between HMT1 and genes encoding components of the histone deacetylase complex Rpd3L (large). A double mutant carrying both RPD3 and HMT1 deletions display increased telomeric silencing and Sir2 occupancy at the telomeric boundary regions, when comparing to a single mutant carrying Hmt1-deletion only. However, the dual rpd3/hmt1-null mutant behaves like the rpd3-null single mutant with respect to silencing behavior, indicating that RPD3 is epistatic to HMT1. Mutants lacking either Hmt1 or its catalytic activity display an increase in the recruitment of histone deacetylase Rpd3 to the telomeric boundary regions. Moreover, in such loss-of-function mutants the levels of acetylated H4K5, which is a substrate of Rpd3, are altered at the telomeric boundary regions. In contrast, the level of acetylated H4K16, a target of the histone deacetylase Sir2, was increased in these regions. Interestingly, mutants lacking either Rpd3 or Sir2 display various levels of reduction in dimethylated H4R3 at these telomeric boundary regions. Together, these data provide insight into the mechanism whereby Hmt1 promotes the proper establishment and maintenance of silent chromatin at the telomeres.


Assuntos
Histona Desacetilases/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Telômero/metabolismo , Acetilação , Imunoprecipitação da Cromatina , Epistasia Genética , Inativação Gênica , Genes Sintéticos/genética , Testes Genéticos , Genoma Fúngico/genética , Histona Desacetilases/genética , Histonas/metabolismo , Metilação , Mutação/genética , Ligação Proteica , Subunidades Proteicas/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo
18.
Mol Biol Int ; 2011: 163827, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22091396

RESUMO

In eukaryotes, messenger RNA biogenesis depends on the ordered and precise assembly of a nuclear messenger ribonucleoprotein particle (mRNP) during transcription. This process requires a well-orchestrated and dynamic sequence of molecular recognition events by specific RNA-binding proteins. Arginine methylation is a posttranslational modification found in a plethora of RNA-binding proteins responsible for mRNP biogenesis. These RNA-binding proteins include both heterogeneous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR) proteins. In this paper, I discuss the mechanisms of action by which arginine methylation modulates various facets of mRNP biogenesis, and how the collective consequences of this modification impart the specificity required to generate a mature, translational- and export-competent mRNP.

19.
Mol Cell Biol ; 30(21): 5245-56, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20823272

RESUMO

Cotranscriptional recruitment of pre-mRNA splicing factors to their genomic targets facilitates efficient and ordered assembly of a mature messenger ribonucleoprotein particle (mRNP). However, how the cotranscriptional recruitment of splicing factors is regulated remains largely unknown. Here, we demonstrate that protein arginine methylation plays a novel role in regulating this process in Saccharomyces cerevisiae. Our data show that Hmt1, the major type I arginine methyltransferase, methylates Snp1, a U1 small nuclear RNP (snRNP)-specific protein, and that the mammalian Snp1 homolog, U1-70K, is likewise arginine methylated. Genome-wide localization analysis reveals that the deletion of the HMT1 gene deregulates the recruitment of U1 snRNP and its associated components to intron-containing genes (ICGs). In the same context, splicing factors acting downstream of U1 snRNP addition bind to a reduced number of ICGs. Quantitative measurement of the abundance of spliced target transcripts shows that these changes in recruitment result in an increase in the splicing efficiency of developmentally regulated mRNAs. We also show that in the absence of either Hmt1 or of its catalytic activity, an association between Snp1 and the SR-like protein Npl3 is substantially increased. Together, these data support a model whereby arginine methylation modulates dynamic associations between SR-like protein and pre-mRNA splicing factor to promote target specificity in splicing.


Assuntos
Precursores de RNA/metabolismo , Splicing de RNA/fisiologia , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Arginina/química , Sítios de Ligação/genética , Genes Fúngicos , Íntrons , Metilação , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Precursores de RNA/genética , Splicing de RNA/genética , RNA Fúngico/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
20.
Mol Cell ; 24(6): 903-15, 2006 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17189192

RESUMO

The splicing machinery associates with genes to facilitate efficient cotranscriptional mRNA processing. We have mapped these associations by genome localization analysis to ascertain how splicing is achieved and regulated on a system-wide scale. Our data show that factors important for intron recognition sample nascent mRNAs and are retained specifically at intron-containing genes via RNA-dependent interactions. Spliceosome assembly proceeds cotranscriptionally but completes posttranscriptionally in most cases. Some intron-containing genes were not bound by the spliceosome, including several developmentally regulated genes. On this basis, we predicted and verified regulated splicing and observed a role for nuclear mRNA surveillance in monitoring those events. Finally, we present evidence that cotranscriptional processing events determine the recruitment of specific mRNA export factors. Broadly, our results provide mechanistic insights into the coordinated regulation of transcription, mRNA processing, and nuclear export in executing complex gene expression programs.


Assuntos
Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Splicing de RNA , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , Adenosina Trifosfatases/genética , Núcleo Celular/genética , Mapeamento Cromossômico , Íntrons , Modelos Genéticos , RNA Nuclear Pequeno , Ribonucleoproteínas/biossíntese , Ribonucleoproteínas Nucleares Pequenas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA