Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Small ; : e2402213, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881352

RESUMO

The intrinsic reactivity of lithium (Li) toward ambient air, combined with insufficient cycling stability in conventional electrolytes, hinders the practical adoption of Li metal anodes in rechargeable batteries. Here, a bilayer interphase for Li metal is introduced to address both its susceptibility to corrosion in ambient air and its deterioration during cycling in carbonate electrolytes. Initially, the Li metal anode is coated with a conformal bottom layer of polysiloxane bearing methacrylate, followed by further grafting with poly(vinyl ethylene carbonate) (PVEC) to enhance anti-corrosion capability and electrochemical stability. In contrast to single-layer applications of polysiloxane or PVEC, the bilayer design offers a highly uniform coating that effectively resists humid air and prevents dendritic Li growth. Consequently, it demonstrates stable plating/stripping behavior with only a marginal increase in overpotential over 200 cycles in carbonate electrolytes, even after exposure to ambient air with 46% relative humidity. The design concept paves the way for scalable production of high-voltage, long-cycling Li metal batteries.

2.
Small ; : e2401295, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412421

RESUMO

Lithium-ion capacitors (LICs) exhibit superior power density and cyclability compared to lithium-ion batteries. However, the low initial Coulombic efficiency (ICE) of amorphous carbon anodes (e.g., hard carbon (HC) and soft carbon (SC)) limits the energy density of LICs by underutilizing cathode capacity. Here, a solution-based deep prelithiation strategy for carbon anodes is applied using a contact-ion pair dominant solution, offering high energy density based on a systematic electrode balancing based on the cathode capacity increased beyond the original theoretical limit. Increasing the anode ICE to 150% over 100%, the activated carbon (AC) capacity is doubled by activating Li+ cation storage, which unleashes rocking-chair LIC operation alongside the dual-ion-storage mechanism. The increased AC capacity results in an energy density of 106.6 Wh kg-1 AC+SC , equivalent to 281% of that of LICs without prelithiation. Moreover, this process lowers the cathode-anode mass ratio, reducing the cell thickness by 67% without compromising the cell capacity. This solution-based deep chemical prelithiation promises high-energy LICs based on transition metal-free, earth-abundant active materials to meet the practical demands of power-intensive applications.

3.
Small ; : e2400638, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804126

RESUMO

The lithium deposited via the complex electrochemical heterogeneous lithium deposition reaction (LDR) process on a lithium foil-based anode (LFA) forms a high-aspect-ratio shape whenever the reaction kinetics reach its limit, threatening battery safety. Thereby, a research strategy that boosts the LDR kinetics is needed to construct a high-power and safe lithium metal anode. In this study, the kinetic limitations of the LDR process on LFA are elucidated through operando and ex situ observations using in-depth electrochemical analyses. In addition, ultra-thin (≈0.5 µm) and high modulus (≥19 GPa) double-walled carbon nanotube (DWNT) membranes with different surface properties are designed to catalyze high-safety LDRs. The oxygen-functionalized DWNT membranes introduced on the LFA top surface simultaneously induce multitudinous lithium nuclei, leading to film-like lithium deposition even at a high current density of 20 mA cm-2. More importantly, the layer-by-layer assembly of the oxygen-functionalized and pristine DWNT membranes results in different surface energies between the top and bottom surfaces, enabling selective surface LDRs underneath the high-modulus bilayer membranes. The protective LDR on the bilayer-covered LFA guarantees an invulnerable cycling process in large-area pouch cells at high current densities for more than 1000 cycles, demonstrating the practicability of LFA in a conventional liquid electrolyte system.

4.
Acc Chem Res ; 56(4): 440-451, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36689689

RESUMO

ConspectusUntil recently, most studies on nucleation and growth mechanisms have employed electrochemical transient measurements, and numerous models have been established on various metal electrode elements. Contrary to the conventional tip-induced nucleation and growth model, a base-induced nucleation and growth mode was discovered not so long ago, which highlighted the importance of direct real-time observations such as visualization. As analysis techniques developed, diverse in situ/operando imaging methods have spurred the fundamental understanding of complex and dynamic battery electrochemistry. Experimental observations of alkali Li and Na metals are limited and difficult because their high reactivity makes not only the fabrication but also the analysis itself challenging. Na metal has high reactivity to electrolytes. Accordingly, it is difficult to visualize the Na deposition in real-time due to gas evolution and resolution limitation. Only a few studies have examined the Na deposition and dissolution reactions in operando. It is generally believed that the Mg anode is free from the dendrite growth of Mg metal, and Mg deposition preferentially occurs along the surface direction. However, whether the Mg anode always follows the dendrite-free growth has currently become a controversial topic and is being discussed and redefined based on real-time imaging analyses. In addition, a variety of morphological evolutions in the metal anodes are required to be systematically distinguished by key parameters. Real-time imaging analysis can directly confirm the solid-liquid-solid multiphase conversion reactions of S and Se cathodes. S and Se elements belong to the same chalcogen group, but their crystal structures and morphological changes significantly differ in each electrode during deposition and dissolution reactions. Therefore, it is necessitated to discuss the nucleation and growth behaviors by examining intrinsic properties of each element in chalcogen cathodes. Considering that a mechanistic understanding of the Se cathode is in its infancy, its nucleation and growth behaviors must be further explored through fundamental studies. In this Account, we aim to discuss the nucleation and growth behaviors of metal (Li, Na, and Mg) anodes and chalcogen (S and Se) cathodes. To elucidate their nucleation and growth mechanisms, we overview the morphological evolutions on the electrode surface and interface by in situ/operando visualizations. Our recent studies covering Li, Na, Mg, S, and Se electrodes verified by operando X-ray imaging are used as critical resources in understanding their nucleation and growth behaviors. Overall, with validation of the complex and dynamic nucleation and growth behaviors of metal and chalcogen electrodes by in situ/operando visualization methods, we hope that this Account can contribute to supporting the fundamental knowledge for the development of high-energy-density metal and chalcogen electrodes.

5.
Anal Chem ; 93(46): 15459-15467, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34752061

RESUMO

The evaluation of new materials, interfaces, and architectures for battery applications are routinely conducted in two-electrode coin cell experiments, which although convenient, can lead to misrepresentations of the processes occurring in the cell. Few three-electrode coin cell designs have been reported, but those which have involve complex cell assembly, specialized equipment, and/or cell configurations which vary drastically from the standard coin cell environment. Herein, we present a novel, facile three-electrode coin cell design which can be easily assembled with existing coin cell parts and which accurately reproduces the environment of traditional coin cells. Using this design, we systematically investigated the inaccuracies incurred in two-electrode measurements in both symmetric/asymmetric cells and half-cell experiments by galvanostatic charge/discharge, galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry. From our investigation, we reveal that lithium metal stripping contributes larger overpotentials than its nucleation/plating processes, a phenomenon which is often misinterpreted in two-electrode cell measurements.


Assuntos
Fontes de Energia Elétrica , Lítio , Espectroscopia Dielétrica , Eletrodos , Íons
6.
Small ; 17(46): e2103306, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34651436

RESUMO

All-solid-state batteries (ASSBs) based on ceramic materials are considered a key technology for automobiles and energy storage systems owing to their high safety and stability. However, contact issues between the electrode and solid-electrolyte materials and undesired chemical reaction occurring at interfaces have hindered their development. Herein, the chemical compatibility and structural stability of composite mixtures of the layered cathode materials Li1- x Ni0.5 Co0.2 Mn0.3 O2 (NCM523) with the garnet-type solid electrolyte Li6.25 Ga0.25 La3 Zr2 O12 (LLZO-Ga) during high-temperature co-sintering under various gas flowing conditions are investigated. In situ high-temperature X-ray diffraction analysis of the composite materials reveals that Li diffusion from LLZO-Ga to NCM523 occurs at high temperature under synthetic air atmosphere, resulting in the decomposition of LLZO-Ga into La2 Zr2 O7 and the recovery of charged NCM523 to the as-prepared state. The structural stability of the composite mixture at high temperature is further investigated under N2 atmosphere, revealing that Li diffuses toward the opposite direction and involves the phase transition of LLZO-Ga from a cubic to tetragonal structure and the reduction of the NCM523 cathode to Ni metal. These findings provide insight into the structural stability of layered cathode and garnet-type solid-electrolyte composite materials and the design of stable interfaces between them via co-sintering for ASSBs.

7.
J Am Chem Soc ; 142(31): 13406-13414, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32608979

RESUMO

Integrated with heat-generating devices, a Li-ion battery (LIB) often operates at 20-40 °C higher than the ordinary working temperature. Although macroscopic investigation of the thermal contribution has shown a significant reduction in the LIB performance, the molecular level structural and chemical origin of battery aging in a mild thermal environment has not been elucidated. On the basis of the combined experiments of the electrochemical measurements, Cs-corrected electron microscopy, and in situ analyses, we herein provide operando structural and chemical insights on how a mild thermal environment affects the overall battery performance using anatase TiO2 as a model intercalation compound. Interestingly, a mild thermal condition induces excess lithium intercalation even at near-ambient temperature (45 °C), which does not occur at the ordinary working temperature. The anomalous intercalation enables excess lithium storage in the first few cycles but exerts severe intracrystal stress, consequently cracking the crystal that leads to battery aging. Importantly, this mild thermal effect is accumulated upon cycling, resulting in irreversible capacity loss even after the thermal condition is removed. Battery aging at a high working temperature is universal in nearly all intercalation compounds, and therefore, it is significant to understand how the thermal condition contributes to battery aging for designing intercalation compounds for advanced battery electrode materials.

8.
J Am Chem Soc ; 141(21): 8441-8449, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31062595

RESUMO

Although Li metal has long been considered to be the ideal anode material for Li rechargeable batteries, our limited understanding of the complex mechanism of Li plating has hindered the widespread deployment of Li metal anodes. Therefore, operando studies are required to unambiguously reveal the complex mechanistic steps involved. In this study, we employed synchrotron-based X-ray imaging methods to visualize the evolution of Li plating/stripping under operando and, more importantly, practical conditions for battery operation, providing detailed insights into morphology evolution during Li plating. The effects of critical battery operating parameters, including concentration of Li salts, current density, ionic strength, and various electrolytes and additives, on Li plating/stripping have been studied. The delicate interplay of these conditions on the resulting Li metal morphology has been characterized for the first time.

9.
J Am Chem Soc ; 141(4): 1463-1466, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30646684

RESUMO

Identifying the catalytically active site(s) in the oxygen reduction reaction (ORR), under real-time electrochemical conditions, is critical to the development of fuel cells and other technologies. We have employed in situ synchrotron-based X-ray absorption spectroscopy (XAS) to investigate the synergistic interaction of a Co-Mn oxide catalyst which exhibits impressive ORR activity in alkaline fuel cells. X-ray absorption near edge structure (XANES) was used to track the dynamic structural changes of Co and Mn under both steady state (constant applied potential) and nonsteady state (potentiodynamic cyclic voltammetry, CV). Under steady state conditions, both Mn and Co valences decreased at lower potentials, indicating the conversion from Mn(III,IV) and Co(III) to Mn(II,III) and Co(II), respectively. Rapid X-ray data acquisition, combined with a slow sweep rate in CV, enabled a 3 mV resolution in the applied potential, approaching a nonsteady (potentiodynamic) state. Changes in the Co and Mn valence states were simultaneous and exhibited periodic patterns that tracked the cyclic potential sweeps. To the best of our knowledge, this represents the first study, using in situ XAS, to resolve the synergistic catalytic mechanism of a bimetallic oxide. Strategies developed/described herein can provide a promising approach to unveil the reaction mechanism for other multimetallic electrocatalysts.

10.
Acc Chem Res ; 51(2): 273-281, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29373023

RESUMO

The need/desire to lower the consumption of fossil fuels and its environmental consequences has reached unprecedented levels in recent years. A global effort has been undertaken to develop advanced renewable energy generation and especially energy storage technologies, as they would enable a dramatic increase in the effective and efficient use of renewable (and often intermittent) energy sources. The development of electrical energy storage (EES) technologies with high energy and power densities, long life, low cost, and safe use represents a challenge from both the fundamental science and technological application points of view. While the advent and broad deployment of lithium-ion batteries (LIBs) has dramatically changed the EES landscape, their performance metrics need to be greatly enhanced to keep pace with the ever-increasing demands imposed by modern consumer electronics and especially the emerging automotive markets. Current battery technologies are mostly based on the use of a transition metal oxide cathode (e.g., LiCoO2, LiFePO4, or LiNiMnCoO2) and a graphite anode, both of which depend on intercalation/insertion of lithium ions for operation. While the cathode material currently limits the battery capacity and overall energy density, there is a great deal of interest in the development of high-capacity cathode materials as well as anode materials. Conversion reaction materials have been identified/proposed as potentially high-energy-density alternatives to intercalation-based materials. However, conversion reaction materials react during lithiation to form entirely new products, often with dramatically changed structure and chemistry, by reaction mechanisms that are still not completely understood. This makes it difficult to clearly distinguish the limitations imposed by the mechanism and practical losses from initial particle morphology, synthetic approaches, and electrode preparations. Transition metal compounds such as transition metal oxides, sulfides, fluorides, phosphides, and nitrides can undergo conversion reactions yielding materials with high theoretical capacity (generally from 500 to 1500 mA h g-1). In particular, a number of transition metal oxides and sulfides have shown excellent electrochemical properties as high-capacity anode materials. In addition, some transition metal fluorides have shown great potential as cathode materials for Li rechargeable batteries. In this Account we present mechanistic studies, with emphasis on the use of operando methods, of selected examples of conversion-type materials as both potentially high-energy-density anodes and cathodes in EES applications. We also include examples of the conceptually similar conversion-type reactions involving chalcogens and halogens, with emphasis on the Li-S system. In this case we focus on the problems arising from the low electrical conductivities of elemental sulfur and Li2S and the "redox shuttle" phenomena of polysulfides. In addition to mechanistic insights from the use of operando methods, we also cover several key strategies in electrode materials design such as controlling the size, morphology, composition, and architecture.

11.
Small ; 13(34)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28722350

RESUMO

Mesoscopic solar cells based on nanostructured oxide semiconductors are considered as a promising candidates to replace conventional photovoltaics employing costly materials. However, their overall performances are below the sufficient level required for practical usages. Herein, this study proposes an anodized Ti foam (ATF) with multidimensional and hierarchical architecture as a highly efficient photoelectrode for the generation of a large photocurrent. ATF photoelectrodes prepared by electrochemical anodization of freeze-cast Ti foams have three favorable characteristics: (i) large surface area for enhanced light harvesting, (ii) 1D semiconductor structure for facilitated charge collection, and (iii) 3D highly conductive metallic current collector that enables exclusion of transparent conducting oxide substrate. Based on these advantages, when ATF is utilized in dye-sensitized solar cells, short-circuit photocurrent density up to 22.0 mA cm-2 is achieved in the conventional N719 dye-I3- /I- redox electrolyte system even with an intrinsically inferior quasi-solid electrolyte.

12.
Angew Chem Int Ed Engl ; 56(23): 6583-6588, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28471078

RESUMO

Nanostructured metal oxide semiconductors have shown outstanding performances in photoelectrochemical (PEC) water splitting, but limitations in light harvesting and charge collection have necessitated further advances in photoelectrode design. Herein, we propose anodized Fe foams (AFFs) with multidimensional nano/micro-architectures as a highly efficient photoelectrode for PEC water splitting. Fe foams fabricated by freeze-casting and sintering were electrochemically anodized and directly used as photoanodes. We verified the superiority of our design concept by achieving an unprecedented photocurrent density in PEC water splitting over 5 mA cm-2 before the dark current onset, which originated from the large surface area and low electrical resistance of the AFFs. A photocurrent of over 6.8 mA cm-2 and an accordingly high incident photon-to-current efficiency of over 50 % at 400 nm were achieved with incorporation of Co oxygen evolution catalysts. In addition, research opportunities for further advances by structual and compositional modifications are discussed, which can resolve the low fill factoring behavior and improve the overall performance.

13.
Small ; 12(16): 2146-72, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-26627913

RESUMO

Developing high-energy-density electrodes for lithium ion batteries (LIBs) is of primary importance to meet the challenges in electronics and automobile industries in the near future. Conversion reaction-based transition metal oxides are attractive candidates for LIB anodes because of their high theoretical capacities. This review summarizes recent advances on the development of nanostructured transition metal oxides for use in lithium ion battery anodes based on conversion reactions. The oxide materials covered in this review include oxides of iron, manganese, cobalt, copper, nickel, molybdenum, zinc, ruthenium, chromium, and tungsten, and mixed metal oxides. Various kinds of nanostructured materials including nanowires, nanosheets, hollow structures, porous structures, and oxide/carbon nanocomposites are discussed in terms of their LIB anode applications.

14.
J Am Chem Soc ; 137(37): 11954-61, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26329036

RESUMO

We report a simple synthetic method of carbon-based hybrid cellular nanosheets that exhibit outstanding electrochemical performance for many key aspects of lithium-ion battery electrodes. The nanosheets consist of close-packed cubic cavity cells partitioned by carbon walls, resembling plant leaf tissue. We loaded carbon cellular nanosheets with SnO2 nanoparticles by vapor deposition method and tested the performance of the resulting SnO2-carbon nanosheets as anode materials. The specific capacity is 914 mAh g(-1) on average with a retention of 97.0% during 300 cycles, and the reversible capacity is decreased by only 20% as the current density is increased from 200 to 3000 mA g(-1). In order to explain the excellent electrochemical performance, the hybrid cellular nanosheets were analyzed with cyclic voltammetry, in situ X-ray absorption spectroscopy, and transmission electron microscopy. We found that the high packing density, large interior surface area, and rigid carbon wall network are responsible for the high specific capacity, lithiation/delithiation reversibility, and cycling stability. Furthermore, the nanosheet structure leads to the high rate capability due to fast Li-ion diffusion in the thickness direction.

15.
Chemistry ; 21(21): 7954-61, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25846958

RESUMO

Yolk-shell-structured nanoparticles with iron oxide core, void, and a titania shell configuration are prepared by a simple soft template method and used as the anode material for lithium ion batteries. The iron oxide-titania yolk-shell nanoparticles (IO@void@TNPs) exhibit a higher and more stable capacity than simply mixed nanoparticles of iron oxide and hollow titania because of the unique structure obtained by the perfect separation between iron oxide nanoparticles, in combination with the adequate internal void space provided by stable titania shells. Moreover, the structural effect of IO@void@TNPs clearly demonstrates that the capacity retention value after 50 cycles is approximately 4 times that for IONPs under harsh operating conditions, that is, when the temperature is increased to 80 °C.

16.
Nano Lett ; 13(9): 4249-56, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23902532

RESUMO

Although different kinds of metal oxide nanoparticles continue to be proposed as anode materials for lithium ion batteries (LIBs), their cycle life and power density are still not suitable for commercial applications. Metal oxide nanoparticles have a large storage capacity, but they suffer from the excessive generation of solid-electrolyte interphase (SEI) on the surface, low electrical conductivity, and mechanical degradation and pulverization resulted from severe volume expansion during cycling. Herein we present the preparation of mesoporous iron oxide nanoparticle clusters (MIONCs) by a bottom-up self-assembly approach and demonstrate that they exhibit excellent cyclic stability and rate capability derived from their three-dimensional mesoporous nanostructure. By controlling the geometric configuration, we can achieve stable interfaces between the electrolyte and active materials, resulting in SEI formation confined on the outer surface of the MIONCs.

17.
Adv Mater ; 36(24): e2401615, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447185

RESUMO

Considering practical viability, Li-metal battery electrolytes should be formulated by tuning solvent composition similar to electrolyte systems for Li-ion batteries to enable the facile salt-dissociation, ion-conduction, and introduction of sacrificial additives for building stable electrode-electrolyte interfaces. Although 1,2-dimethoxyethane with a high-donor number enables the implementation of ionic compounds as effective interface modifiers, its ubiquitous usage is limited by its low-oxidation durability and high-volatility. Regulation of the solvation structure and construction of well-structured interfacial layers ensure the potential strength of electrolytes in both Li-metal and LiNi0.8Co0.1Mn0.1O2 (NCM811). This study reports the build-up of multilayer solid-electrolyte interphase by utilizing different electron-accepting tendencies of lithium difluoro(bisoxalato) phosphate (LiDFBP), lithium nitrate, and synthetic 1-((trifluoromethyl)sulfonyl)piperidine. Furthermore, a well-structured cathode-electrolyte interface from LiDFBP effectively addresses the issues with NCM811. The developed electrolyte based on a framework of highly- and weakly-solvating solvents with interface modifiers enables the operation of Li|NCM811 cells with a high areal capacity cathode (4.3 mAh cm-2) at 4.4 V versus Li/Li+.

18.
ACS Appl Mater Interfaces ; 16(27): 34892-34901, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38949109

RESUMO

There is a growing demand for research and development of advanced energy storage devices with high energy density utilizing earth-abundant metal anodes such as sodium metal. Tellurium, a member of the chalcogen group, stands out as a promising cathode material due to its remarkable volumetric capacity, comparable to sulfur, and significantly high electrical conductivity. However, critical issues arise from soluble sodium polytellurides, leading to the shuttle effect. This phenomenon can result in the loss of active materials, self-discharge, and anode instability. Here, we introduce polypyrrole-coated tellurium nanotubes as the cathode materials, where polypyrrole plays a crucial role in preventing the dissolution of polytellurides, as confirmed through operando optical microscopy. The polypyrrole-coated tellurium nanotubes exhibited an outstanding rate performance and long cycle stability in sodium-tellurium batteries. These research findings are anticipated to bolster the viability of polypyrrole-coated tellurium nanotubes as promising cathode materials, making a substantial contribution to the commercialization of sodium-ion battery technology.

19.
Phys Chem Chem Phys ; 15(20): 7690-5, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23595419

RESUMO

The demand for lithium has greatly increased with the rapid development of rechargeable batteries. Currently, the main lithium resource is brine lakes, but the conventional lithium recovery process is time consuming, inefficient, and environmentally harmful. Rechargeable batteries have been recently used for lithium recovery, and consist of lithium iron phosphate as a cathode. These batteries feature promising selectivity between lithium and sodium, but they suffer from severe interference from coexisting magnesium ions, an essential component of brine, which has prompted further study. This study reports on a highly selective and energy-efficient lithium recovery system using a rechargeable battery that consists of a λ-MnO2 positive electrode and a chloride-capturing negative electrode. This system can be used to recover lithium from brine even in the presence of magnesium ions as well as other dissolved cations. In addition, lithium recovery from simulated brine is successfully demonstrated, consuming 1.0 W h per 1 mole of lithium recovered, using water similar to that from the artificial brine, which contains various cations (mole ratio: Na/Li ≈ 15.7, K/Li ≈ 2.2, Mg/Li ≈ 1.9).

20.
J Nanosci Nanotechnol ; 13(12): 7924-31, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24266166

RESUMO

A radio frequency (RF) sputtering system is used to coat nano-thick TiO2 layer on the overlithiated layered metal oxide (OLO) electrode. The X-ray diffraction (XRD) and the field emission-scanning electron microscope (FE-SEM) images indicate amorphous TiO2 is coated on the top surface of the electrode with a thickness of approximately 20 nm for the 40 min sputtered sample. The sample sputtered for 40 minutes cycled at 90 mA g(-1) between 2 and 4.8 V versus Li+/Li has 15 mA h g(-1) more specific capacity at 100th cycle than that of the uncoated sample. In the voltage profiles, additional overpotential is unobservable upon sputtering TiO2 in comparison to that of the reference sample. Further analyses by the electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) demonstrate the sputtered sample has less electrolyte decomposition products on the surface than that of the reference sample. Moreover, in the case of sputtering, reduced amount of transition metal and Li2O are deposited on the surface of the counter electrode, Li. In summary, the sputtered TiO2 acts as nano-sized artificial solid electrolyte interface (SEI) layer, which protects the surface of the electrode and improves kinetic properties, leading to improved performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA