Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(26): 11727-11736, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38836508

RESUMO

Satellite evidence indicates a global increase in lacustrine algal blooms. These blooms can drift with winds, resulting in significant changes of the algal biomass spatial distribution, which is crucial in bloom formation. However, the lack of long-term, large-scale observational data has limited our understanding of bloom drift. Here, we have developed a novel method to track the drift using multi-source remote sensing satellites and presented a comprehensive bloom drift data set for four typical lakes: Lake Taihu (China, 2011-2021), Lake Chaohu (China, 2011-2020), Lake Dianchi (China, 2003-2021), and Lake Erie (North America, 2003-2021). We found that blooms closer to the water surface tend to drift faster. Higher temperatures and lower wind speeds bring blooms closer to the water surface, therefore accelerating drift and increasing biomass transportation. Under ongoing climate change, algal blooms are increasingly likely to spread over larger areas and accumulate in downwind waters, thereby posing a heightened risk to water resources. Our research greatly improves the understanding of algal bloom dynamics and provides new insights into the driving factors behind the global expansion of algal blooms. Our bloom-drift-tracking methodology also paves the way for the development of high-precision algal bloom prediction models.


Assuntos
Mudança Climática , Eutrofização , Lagos , Monitoramento Ambiental/métodos , Vento , Biomassa , China , Tecnologia de Sensoriamento Remoto
2.
J Infect Dis ; 227(5): 675-685, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36546708

RESUMO

BACKGROUND: Chronic hepatitis B is usually treated with nucleos(t)ide analogues (NAs). However, a cure is rarely achieved, even with years of treatment. Here, we investigated whether viral replication is completely halted and how long covalently closed circular DNA (cccDNA) persists in patients successfully treated with NAs. METHODS: A series of longitudinal serum samples and a collection of cross-sectional liver biopsies were obtained from patients successfully treated with NAs. Viral variants in serum HBV RNA were enumerated by deep sequencing. Viral replication intermediates in hepatocytes were directly visualized by in situ hybridization. The apparent half-life of each cccDNA was estimated. RESULTS: Three of 6 successfully treated patients demonstrated clear evidence of a small proportion of virus evolution, although the overwhelming proportion of variants were identical or possessed a similar degree of divergence through time. The apparent half-life of variants was estimated to be from approximately 7.42 weeks to infinite. Hepatocytes remained positive for cytoplasmic nucleocapsids-associated relaxed circular DNA in 4 of 7 liver needle biopsies. CONCLUSIONS: We conclude that even after prolonged treatment, a small proportion of the cccDNA reservoir is constantly replenished by continued low-level HBV replication, whereas a large proportion of the cccDNA reservoir persists over time.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Hepatite B Crônica/tratamento farmacológico , Antivirais/uso terapêutico , Estudos Transversais , DNA Viral/genética , Vírus da Hepatite B/genética , Replicação Viral , DNA Circular , Hepatite B/tratamento farmacológico
3.
J Environ Manage ; 342: 118142, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37182485

RESUMO

In this study, a laboratory-scale vacuum membrane distillation (VMD) system coupled with microbubble aeration (MBA) was developed for the treatment of high-salinity brine containing organic matters. Herein, at the beginning, feedwater only containing model organics such as humic acid (HA), bovine serum albumin (BSA) and sodium alginate (SA) was utilized to investigate the organic-fouling behavior, results indicated that the permeate flux was not affected by a thin and loose contaminated layer deposited on the membrane surface. Furthermore, dissolved organics in the feed brine inhibited the occurrence of membrane wetting due to the existence of a compact and protective crystals/organic-fouling layer, which can prevent the intrusion of scaling ions into membrane substrates. Besides, organics in the feedwater have a high tendency to adsorb on the membrane surface based on molecular dynamics simulations, thus, forming an organic-fouling layer prior to inorganic scaling. Finally, the effect of MBA on fouling alleviation was evaluated in VMD system, nearly 50% of salt precipitation from fouled membrane was effectively removed with the introduction of MBA, which can be ascribed to a combination of mechanisms, including surface shear forces and electrostatic attractions induced by microbubbles, meanwhile, about 2.2% of the total energy was only consumed, when using MBA. Together, these results demonstrated that MBA was a promising approach to alleviate membrane fouling in VMD.


Assuntos
Microbolhas , Purificação da Água , Matéria Orgânica Dissolvida , Destilação/métodos , Vácuo , Salinidade , Membranas Artificiais , Purificação da Água/métodos
4.
J Environ Manage ; 348: 119171, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832287

RESUMO

Membrane fouling caused by inorganic ions and natural organic matters (NOMs) has been a severe issue in membrane distillation. Microbubble aeration (MB) is a promising technology to control membrane fouling. In this study, MB aeration was introduced to alleviate humic acid (HA) composited fouling during the treatment of simulative reverse osmosis concentrate (ROC) by vacuum membrane distillation (VMD). The objective of this work was to explore the HA fouling inhibiting effect by MB aeration and discuss its mechanism from the interfacial point of view. The results showed that VMD was effective for treating ROC, followed by a severe membrane fouling aggravated with the addition of 100 mg/L HA in feed solution, resulting in 45.7% decline of membrane flux. Analysis using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and zeta potential distribution of charged particles proved the coexistence of HA and inorganic cations (especially Ca2+), resulting in more serious membrane fouling. The introduction of MB aeration exhibited excellent alleviating effect on HA-inorganic salt fouling, with the normalized flux increased from 19.7% to 37.0%. The interfacial properties of MBs played an important role, which altered the zeta potential distributions of charged particles in HA solution, indicating that MBs adhere the HA complexations. Furthermore, this mitigating effect was limited at high inorganic cations concentration. Overall, MBs could change the potential characteristics of HA complexes, which also be used for other similar membrane fouling alleviation.


Assuntos
Substâncias Húmicas , Purificação da Água , Substâncias Húmicas/análise , Destilação/métodos , Microbolhas , Membranas Artificiais , Purificação da Água/métodos , Cátions
5.
Nanotechnology ; 31(37): 375703, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32480393

RESUMO

As a new type of colloidal nanocrystals, perovskite quantum dots (QDs) have received widespread attention. Water and oxygen in the air can affect the luminous efficiency of quantum dots, which can degrade the surface of QDs and affect their luminescence efficiency. Herein we discuss the synthesis of high-quality QDs using an uncomplicated coating method by which an ultrathin epitaxial Al self-passivation layer bearing homogeneous ligands can be coated on the QDs. The core/shell perovskite QDs maintain high luminescence efficiency and photostability. The CsPbBr3/2ZnS/Al QDs were only attenuated by 10% after 14 h of exposure to LED light. The temperature-dependent photoluminescence properties of the all-inorganic perovskite QDs, such as the PL intensity, emission peak position, and the full width at half maximum (FWHM), were investigated. The results indicated that the activation energy of QDs increases with the increase of the number of ZnS shell layers, its stability increases significantly. The introduction of Al does not change the luminescence mechanism of QDs. Finally, we have made flexible light-emitting device with CsPbBr3/2ZnS/Al QDs.

6.
Environ Sci Technol ; 53(24): 14430-14440, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31738527

RESUMO

The aging effects of sodium hydroxide (NaOH) on ion-exchange membranes were systematically studied, including the membrane properties, desalination performance, and fouling behaviors. After aging in NaOH solution, there were minor changes in the cation-exchange membrane (CEM) properties; however, functional groups (i.e., quaternary amines) on the anion-exchange membranes (AEMs) were converted into benzylic alcohol, alkene, and tertiary amines, respectively, by nucleophilic substitution, Hofmann elimination, and ylide formation. These degradations rendered decreased ion-exchange capacity (IEC), increased electrical resistance, lost hydrophilicity, and weakened mechanical strength. Moreover, severe deteriorations of desalination performance were observed due to the little ion-exchange ability of the degraded AEMs. The desalination rates were restored after cultivating the aged AEMs in acid solution, mainly because the tertiary amines transformed from the hydroxide form (OH-form) to the ionic chlorine form (Cl-form). The restored desalination rates indicated that the main degradation products were tertiary amines. In addition, the antifouling performance decreased in the order of aged OH-form > aged Cl-form > original AEMs due to the reduction of foulant-membrane intermolecular interactions after aging in NaOH solution. The results contribute to establishing a more comprehensive understanding of the effects of alkaline cleaning on IEMs and provide new insights into cleaning-process optimization and membrane modification.


Assuntos
Polímeros , Águas Residuárias , Cátions , Troca Iônica , Membranas Artificiais
7.
Appl Opt ; 57(19): 5380-5384, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30117830

RESUMO

A series of erbium-doped fluoro-bromozirconate glasses modified by various concentrations of Br- was prepared using the melt-quenching method. The mid-infrared fluorescence intensity (2.7 µm) was improved by increasing the content of Br-. The differential scanning calorimetry, x-ray diffraction, Fourier-transform infrared spectra, Raman spectra, and mid-infrared luminescence spectra were measured. The decreased phonon density shows that the structural changes due to inserting Br- can enhance the mid-infrared luminescent intensity. From the Judd-Ofelt analysis, it was found that the intensity of Ω2 was enhanced with the introduction of Br- and shows greater asymmetry and stronger covalency. Using the Fuchtbauer-Ladenburg theory and McCumber theory, the emission cross section (2.9×10-20 cm2) and absorption cross section (1.68×10-20 cm2) at 2.7 µm were determined. Hence, erbium-doped fluoro-bromozirconate glass is a potential material for application in the mid-infrared region.

8.
Water Sci Technol ; 77(1-2): 229-238, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29339622

RESUMO

A fundamental understanding of fouling mechanisms is critical to improving filtration operations. The performance of four parallel membrane bioreactors (MBRs) with different sludge retention times (SRTs) was monitored during long-term constant flowrate filtration. The characteristics of the membrane and transmembrane pressure (TMP) profiles obtained were studied to demonstrate fouling mechanisms. Both classical blocking models and their combined models were evaluated. The intermediate model provided very good agreement with all the TMP data. However, the combined cake-intermediate and intermediate-standard models were more effective in the description of the experimental data. Contributions analysis indicated that the cake, intermediate and standard blocking models were the dominant fouling mechanisms. Scanning electron microscopy and energy dispersive X-ray (SEM-EDX) imaging showed that cake blocking by organic matter and standard blocking by inorganic matter made the main contributions to membrane fouling. The combined cake-intermediate and intermediate-standard models may be applicable to systems where these two models are consistent with the experimentally observed fouling mechanisms in an MBR.


Assuntos
Incrustação Biológica/prevenção & controle , Reatores Biológicos/microbiologia , Membranas Artificiais , Modelos Teóricos , Purificação da Água/métodos , Filtração/métodos , Hidrodinâmica , Microscopia Eletrônica de Varredura , Pressão , Esgotos/microbiologia
9.
Environ Sci Technol ; 50(3): 1393-402, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26735590

RESUMO

Polymer (i.e., anionic polyacrylamide (APAM)) fouling of polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes and its relationships to intermolecular interactions were investigated using atomic force microscopy (AFM). Distinct relations were obtained between the AFM force spectroscopy measurements and calculated fouling resistance over the concentration polarization layer (CPL) and gel layer (GL). The measured maximum adhesion forces (Fad,max) were closely correlated with the CPL resistance (Rp), and the proposed molecular packing property (largely based on the shape of AFM force spectroscopy curve) of the APAM chains was related to the GL resistance (Rg). Calcium ions (Ca(2+)) and sodium ions (Na(+)) caused more severe fouling. In the presence of Ca(2+), the large Rp corresponded to high foulant-foulant Fad,max, resulting in high flux loss. In addition, the Rg with Ca(2+) was minor, but the flux recovery rate after chemical cleaning was the lowest, indicating that Ca(2+) created more challenges in GL cleaning. With Na(+), the fouling behavior was complicated and concentration-dependent. The GL structures with Na(+), which might correspond to the proposed molecular packing states among APAM chains, played essential roles in membrane fouling and GL cleaning.


Assuntos
Membranas Artificiais , Polímeros/química , Ultrafiltração/métodos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Íons , Microscopia de Força Atômica , Polivinil , Poluentes Químicos da Água/química
10.
Biodegradation ; 27(2-3): 95-106, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26931341

RESUMO

Given the increasing discoveries related to the eco-toxicity of titanium dioxide (TiO2) nanoparticles (NPs) in different ecosystems and with respect to public health, it is important to understand their potential effects in drinking water treatment (DWT). The effects of TiO2 NPs on ammonia reduction, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in biological activated carbon (BAC) filters for drinking water were investigated in static and dynamic states. In the static state, both the nitrification potential and AOB were significantly inhibited by 100 µg L(-1) TiO2 NPs after 12 h (p < 0.05), and the threshold decreased to 10 µg L(-1) with prolonged exposure (36 h, p < 0.05). However, AOA were not considerably affected in any of the tested conditions (p > 0.05). In the dynamic state, different amounts of TiO2 NP pulses were injected into three pilot-scale BAC filters. The decay of TiO2 NPs in the BAC filters was very slow. Both titanium quantification and scanning electron microscope analysis confirmed the retention of TiO2 NPs in the BAC filters after 134 days of operation. Furthermore, the TiO2 NP pulses considerably reduced the performance of ammonia reduction. This study identified the retention of TiO2 NPs in BAC filters and the negative effect on the ammonia reduction, suggesting a potential threat to DWT by TiO2 NPs.


Assuntos
Amônia/metabolismo , Água Potável/análise , Nanopartículas/análise , Titânio/análise , Purificação da Água/métodos , Archaea/metabolismo , Biodegradação Ambiental , Carvão Vegetal , Filtração
11.
Environ Toxicol ; 30(8): 895-903, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24519877

RESUMO

This study explored the effects of humic acid (HA) on the toxicity of ZnO nanoparticles (nano-ZnO) and Zn(2+) to Anabaena sp. Typical chlorophyll fluorescence parameters, including effective quantum yield, photosynthetic efficiency and maximal electron transport rate, were measured by a pulse-amplitude modulated fluorometer. Results showed that nano-ZnO and Zn(2+) could inhibit Anabaena sp. growth with the EC50 (concentration for 50% of maximal effect) of 0.74 ± 0.01 and 0.3 ± 0.01 mg/L, respectively. In the presence of 3.0 mg/L of HA, EC50 of nano-ZnO increased to 1.15 ± 0.04 mg/L and EC50 of Zn(2+) was still 0.3 ± 0.01 mg/L. Scanning electron microscopy observation revealed that HA prevented the adhesion of nano-ZnO on the algae cells due to the increased electrostatic repulsion. The generation of intracellular reactive oxygen species and cellular lipid peroxidation were significantly limited by HA. Nano-ZnO had more damage to the cell membrane than Zn(2+) did, which could be proven by the malondialdehyde content in Anabaena sp. cells. © 2014 Wiley Periodicals, Inc. Environ Toxicol 30: 895-903, 2015.


Assuntos
Anabaena/efeitos dos fármacos , Quelantes/farmacologia , Substâncias Húmicas , Óxido de Zinco/toxicidade , Zinco/toxicidade , Animais , Membrana Celular/efeitos dos fármacos , Quelantes/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Nanopartículas/toxicidade , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
12.
Environ Sci Technol ; 48(24): 14549-57, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25402823

RESUMO

Algae organic matter (AOM), including intracellular organic matter (IOM) and extracellular organic matter (EOM), are major membrane foulants in the treatment of algae-polluted water. In this study, the effects of EOM and IOM (at dissolved organic concentrations of 8 mg/L) on the fouling of a poly(ether sulfone) ultrafiltration (UF) membrane were investigated using a dead-end down-flow UF unit. Changes in the membrane pore geometry and the interaction energy between the membrane and foulants were analyzed based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. The data (relative standard deviation within 10%) showed that UF was able to retain 57% and 46% of IOM and EOM respectively, while the corresponding membrane fluxes rapidly reduced to 28% and 33% of their respective initial values after a specific filtration volume of only 3.75 mL/cm(2). The fouling model implied that cake formation was the major mechanism. Specifically, IOM foulant had a much greater free energy of cohesion (-59.08 mJ/m(2)) than EOM foulant (3.2 mJ/m(2)), leading to the formation of a compacted cake layer on the membrane surface. In contrast, small molecules of hydrophobic EOM tended to be adsorbed into the membrane pores, leading to significant reduction of the pore size and membrane flux. Therefore, the overall fouling rates caused by EOM and IOM were comparable when both of the above-mentioned mechanisms were considered.


Assuntos
Membranas Artificiais , Microcystis , Modelos Teóricos , Ultrafiltração/instrumentação , Espaço Extracelular/química , Substâncias Húmicas , Interações Hidrofóbicas e Hidrofílicas , Compostos Orgânicos/química , Termodinâmica
13.
Environ Sci Technol ; 48(5): 2885-92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24502417

RESUMO

Potassium permanganate (KMnO4) preoxidation is capable of enhancing cyanobacteria cell removal. However, the impacts of KMnO4 on cell viability and potential toxin release have not been comprehensively characterized. In this study, the impacts of KMnO4 on Microcystis aeruginosa inactivation and on the release and degradation of intracellular microcystin-LR (MC-LR) and other featured organic matter were investigated. KMnO4 oxidation of M. aeruginosa exhibited some kinetic patterns that were different from standard chemical reactions. Results indicated that cell viability loss and MC-LR release both followed two-segment second-order kinetics with turning points of KMnO4 exposure (ct) at cty and ctr, respectively. KMnO4 primarily reacted with dissolved and cell-bound extracellular organic matter (mucilage) and resulted in a minor loss of cell viability and MC-LR release before the ct value reached cty. Thereafter, KMnO4 approached the inner layer of the cell wall and resulted in a rapid decrease of cell viability. Further increase of ct to ctr led to cell lysis and massive release of intracellular MC-LR. The MC-LR release rate was generally much slower than its degradation rate during permanganation. However, MC-LR continued to be released even after total depletion of KMnO4, which led to a great increase in MC-LR concentration in the treated water.


Assuntos
Microcistinas/metabolismo , Microcystis/efeitos dos fármacos , Permanganato de Potássio/farmacologia , Sobrevivência Celular , Cinética , Toxinas Marinhas , Microcystis/metabolismo , Permanganato de Potássio/química , Toxinas Biológicas , Purificação da Água/métodos
14.
RSC Adv ; 14(32): 23011-23022, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39040693

RESUMO

The photo-reduction of bromate (BrO3 -) has attracted much attention due to the carcinogenesis and genotoxicity of BrO3 - in drinking water. In this study, a heterojunction photocatalyst was developed by depositing Au nanoparticles (NPs) onto P25 TiO2 NPs through a one-pot, solvent-thermal process. Due to the unique properties of Au, the Au NPs deposited on the TiO2 surface created a Schottky barrier between the metal and the semiconductor, leading to an effective separation of photo-generated charge carriers as the Au nanoparticles served as electron sinks. The Au/TiO2 photocatalyst demonstrated efficient reduction of BrO3 - under UV light illumination without the need for sacrificial agents. The effect of different Au loading of Au/TiO2 was systematically investigated for its influence on the generation of electrons and the reduction ability of BrO3 -. The results indicate that the 1% Au/TiO2 catalyst exhibited a higher concentration of localized electrons, rendering it more effective in BrO3 - removal. The photocatalytic efficiency for BrO3 - reduction decreased upon the addition of K2S2O8 as an electron quencher, suggesting that the primary factor in this photo-reduction process was the availability of electrons. These findings hold promise for the potential application of the Au/TiO2 catalyst in the removal of BrO3 - from drinking water through photo-reduction.

15.
J Hazard Mater ; 476: 135142, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39029185

RESUMO

The occurrence of pyrrolizidine alkaloids (PAs) in the aquatic environment has received growing attention due to their persistent mutagenicity and carcinogenicity. In this study, the photooxidation processes of four representative PAs (senecionine, senecionine N-oxide, europine, and heliotrine) in the presence of dissolved organic matter (DOM) were investigated. The excited triplet DOM (3DOM*) was demonstrated to play a dominant role in the phototransformation of PAs. The observed degradation rates of PAs largely depended on the DOM concentration. Alkaline conditions and the presence of HCO3-/CO32- were conducive to the photodegradation. Based on kinetic modeling, the second-order reaction rate constants of PAs with 3DOM* were predicted to be (1.7∼5.3)×108 M-1 s-1, nearly two orders of magnitude higher than those with singlet oxygen (1O2). The monoester structure and electron-withdrawing substituent (e.g., -O atom) substantially affected the one-electron oxidation potential of PAs, which dictates the reaction rates of PAs with 3DOM*. Finally, a tentative degradation pathway of PAs was proposed, involving the formation of an N-centered radical cation through one-electron transfer, which then likely deprotonated and further oxidized to more persistent and toxic phototransformation products with an added oxygen atom into the pyrrole ring.

16.
Chem Eng J ; 223(100): 678-687, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24976787

RESUMO

In this paper, the MCM-41 has been modified by impregnation with zeolite A to prepare a kind of new adsorbent. The adsorption of TC from aqueous solutions onto modified MCM-41 has been studied. It was discovered that the adsorption capability of zeolite A modified MCM-41 (A-MCM-41) increased dramatically after modification. The modified MCM-41 was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier Transform Infrared (FTIR) analysis, Transmission electron microscopy (TEM) images, and 29Si and 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectra. The modified MCM-41 structure was still retained after impregnated with zeolite A but the surface area and pore diameter decreased due to pore blockage. The adsorption of TC on modified MCM-41 was discussed regarding various parameters such as pH, initial TC concentration, and the reaction time. The pH effects on TC adsorption indicated that the adsorbents had better adsorption performances in acidic and neutral conditions. The adsorption isotherms were fitted well by the Langmuir model. The adsorption kinetics was well described by both pseudo-second order equation and the intra-particle diffusion model. The adsorption behavior in a fixed-bed column system followed Thomas model. The adsorption behavior of TC was the chemical adsorption with an ion exchange process and electrostatic adsorption.

17.
Water Sci Technol ; 67(7): 1627-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23552254

RESUMO

To achieve a quick start-up and stable operation, aerobic granular sludge (AGS) was cultivated in a sequencing batch airlift reactor (SBAR) with the addition of bone glue augmentation. Adding an amount of bone glue (40 mg L(-1)) can accelerate granulation, which advanced by 10 d on average. Aerobic granules of size 0.5-3.0 mm were dominant in the SBAR and the settling velocity acquired a better correlation with the size of the AGS. In addition, the content of total polysaccharides was 19.54 mg gMLSS(-1) (grams of mixed liquor suspended solids) (an increase of 34.0%), the content of total protein was 60.59 mg gMLSS(-1) (an increase of a factor of 33) and the total proteins/total polysaccharides ratio was 3.3. The relatively high protein content was an essential feature for cultivation of AGS, which may indicate that extracellular polymeric substance was the mechanism for granulation due to the adhesion of microorganisms by bone glue. AGS possessed better chemical oxygen demand, NH4(+)-N and PO4(3-)-P removal efficiency (of 86.7, 90.6 and 93.8%, respectively) and no nitrite accumulation was observed in the whole process.


Assuntos
Reatores Biológicos , Cimentos Ósseos , Esgotos , Estudos de Viabilidade , Tamanho da Partícula , Polímeros/análise
18.
J Environ Sci (China) ; 25(4): 830-7, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23923794

RESUMO

Amino-functionalized Fe3O4@mesoporous SiO2 core-shell composite microspheres NH2-MS in created in multiple synthesis steps have been investigated for Pb(II) and Cd(II) adsorption. The microspheres were characterized by transmission electron microscope (TEM), scanning electron microscope (SEM), N2 adsorption-desorption, zeta potential measurements and vibrating sample magnetometer. Batch adsorption tests indicated that NH2-MS exhibited higher adsorption affinity toward Pb(II) and Cd(II) than MS did. The Langmuir model could fit the adsorption isotherm very well with maximum adsorption capacity of 128.21 and 51.81 mg/g for Pb(II) and Cd(II), respectively, implying that adsorption processes involved monolayer adsorption. Pb(II) and Cd(II) adsorption could be well described by the pseudo second-order kinetics model, and was found to be strongly dependent on pH and humic acid. The Pb(II)- and Cd(II)-loaded microspheres were effectively desorbed using 0.01 mol/L HCl or EDTA solution. NH2-MS have promise for use as adsorbents in the removal of Pb(II) and Cd(II) in wastewater treatment processes.


Assuntos
Aminas/química , Cádmio/isolamento & purificação , Chumbo/isolamento & purificação , Fenômenos Magnéticos , Microesferas , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Substâncias Húmicas/análise , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Porosidade , Reciclagem , Soluções , Eletricidade Estática , Temperatura
19.
Hepatol Commun ; 7(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995994

RESUMO

BACKGROUND AND AIMS: Chronic HBV infection evolves through different phases. Interactions between viral replication and the host immune response in the liver underlie the pathogenesis of this disease. The aim of this study was to directly visualize the HBV replication intermediates at a single-cell resolution inscribed on morphological changes corresponding to disease activity. METHODS: A set of archived formalin-fixed paraffin-embedded liver needle biopsies from treatment-naïve patients were collected and categorized into phases according to the American Association for the Study of the Liver Diseases (AASLD) guidelines. HBV RNA and DNA were detected using in situ hybridization assays. RESULTS: The hepatocytes were ubiquitously infected in subjects with immune tolerance, and their percentage was gradually decreased in immune-active and inactive chronic hepatitis B phases. HBV-infected hepatocytes were prone to localize close to fibrous septa. The subcellular distribution of signals was able to distinguish hepatocytes with productive infection from those harboring HBV integrants and transcriptionally inactive covalently closed circular DNAs. A smaller number of hepatocytes with productive infection and more harboring transcriptionally inactive covalently closed circular DNA or HBV integrants became apparent in the inactive chronic hepatitis B phase. CONCLUSION: An atlas of in situ characteristics of viral-host interactions for each phase is described, which sheds light on the nature of viral replication and disease pathogenesis among the phases of chronic HBV infection.


Assuntos
Hepatite B Crônica , Humanos , Vírus da Hepatite B , DNA Viral/genética , Replicação Viral/genética , DNA Circular/genética
20.
Bioprocess Biosyst Eng ; 35(7): 1049-55, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22451077

RESUMO

Aerobic granules technology (AGS) was difficult to cultivate at low temperature, and the treatment efficiency of domestic sewage was remarkably low because of low temperature, which greatly limits its development and application. AGS formation time significantly decreased for 43 days by adding 19.0 mg/L Mg(2+) and 21.0 mg/L Al(3+), moreover, AGS possessed better simultaneously chemical oxygen demand, NH(4) (+)-N, TP removal efficiencies at low temperature, which the respective removal efficiencies were 85.6, 88.8, and 91.9%. The content of total polysaccharides was 8.23 mg/gMLSS as well as the content of total protein was 8.52 mg/gMLSS, consequently, the total proteins/total polysaccharides ratio was 1.04, which the relatively high protein content induced by Mg(2+) and Al(3+) presented an essential feature for AGS formation. In addition, the affinity among Mg(2+), Al(3+) and -OH may drive the stretching vibration of -OH band which led to the infrared motion of functional groups in AGS and accelerate AGS formation as well.


Assuntos
Alumínio/química , Reatores Biológicos , Temperatura Baixa , Magnésio/química , Aerobiose , Amônia/isolamento & purificação , Microscopia Eletrônica de Varredura , Esgotos , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA