Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 95(28): 10588-10594, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37402148

RESUMO

N6-Methyladenosine (m6A) is one of the most abundant and prevalent natural modifications occurring in diverse RNA species. m6A plays a wide range of roles in physiological and pathological processes. Revealing the functions of m6A relies on the faithful detection of individual m6A sites in RNA. However, developing a simple method for the single-base resolution detection of m6A is still a challenging task. Herein, we report an adenosine deamination sequencing (AD-seq) technique for the facile detection of m6A in RNA at single-base resolution. The AD-seq approach capitalizes on the selective deamination of adenosine, but not m6A, by the evolved tRNA adenosine deaminase (TadA) variant of TadA8e or the dimer protein of TadA-TadA8e. In AD-seq, adenosine is deaminated by TadA8e or TadA-TadA8e to form inosine, which pairs with cytidine and is read as guanosine in sequencing. m6A resists deamination due to the interference of the methyl group at the N6 position of adenosine. Thus, the m6A base pairs with thymine and is still read as adenosine in sequencing. The differential readouts from A and m6A in sequencing can achieve the single-base resolution detection of m6A in RNA. Application of the proposed AD-seq successfully identified individual m6A sites in Escherichia coli 23S rRNA. Taken together, the proposed AD-seq allows simple and cost-effective detection of m6A at single-base resolution in RNA, which provides a valuable tool to decipher the functions of m6A in RNA.


Assuntos
RNA de Transferência , RNA , RNA/metabolismo , Desaminação , RNA de Transferência/metabolismo , Adenosina/metabolismo , Adenosina Desaminase/metabolismo
2.
Anal Chem ; 95(2): 1556-1565, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36563112

RESUMO

DNA methylation (5-methylcytosine, 5mC) is the most important epigenetic modification in mammals. Deciphering the roles of 5mC relies on the quantitative detection of 5mC at the single-base resolution. Bisulfite sequencing (BS-seq) is the most often employed technique for mapping 5mC in DNA. However, bisulfite treatment may cause serious degradation of input DNA due to the harsh reaction conditions. Here, we engineered the human apolipoprotein B mRNA-editing catalytic polypeptide-like 3C (A3C) protein to endow the engineered A3C (eA3C) protein with differential deamination activity toward cytosine and 5mC. By the virtue of the unique property of eA3C, we proposed an engineered A3C sequencing (EAC-seq) method for the bisulfite-free and quantitative mapping of 5mC in DNA at the single-base resolution. In EAC-seq, the eA3C protein can deaminate C but not 5mC, which is employed to differentiate C and 5mC in sequencing. Using the EAC-seq method, we quantitatively detected 5mC in genomic DNA of lung cancer tissue. In contrast to the harsh reaction conditions of BS-seq, which could lead to significant degradation of DNA, the whole procedure of EAC-seq is carried out under mild conditions, thereby preventing DNA damage. Taken together, the EAC-seq approach is bisulfite-free and straightforward, making it an invaluable tool for the quantitative detection of 5mC in limited DNA at the single-base resolution.


Assuntos
5-Metilcitosina , Citidina Desaminase , Metilação de DNA , Humanos , 5-Metilcitosina/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Citosina , DNA/genética , DNA/metabolismo , Epigênese Genética , Análise de Sequência de DNA/métodos , Sulfitos/metabolismo
3.
Anal Chem ; 95(21): 8384-8392, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37192336

RESUMO

Chemical modifications in DNA have profound influences on the structures and functions of DNA. Uracil, a naturally occurring DNA modification, can originate from the deamination of cytosine or arise from misincorporation of dUTP into DNA during DNA replication. Uracil in DNA will imperil genomic stability due to their potential in producing detrimental mutations. An in-depth understanding of the functions of uracil modification requires the accurate determination of its site as well as content in genomes. Herein, we characterized that a new member of the uracil-DNA glycosylase (UDG) family enzyme (UdgX-H109S) could selectively cleave both uracil-containing single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). Based on this unique property of UdgX-H109S, we developed an enzymatic cleavage-mediated extension stalling (ECES) method for the locus-specific detection and quantification of uracil in genomic DNA. In the ECES method, UdgX-H109S specifically recognizes and cleaves the N-glycosidic bond of uracil from dsDNA and generates an apurinic/apyrimidinic (AP) site, which could be broken by APE1 to form a one-nucleotide gap. The specific cleavage by UdgX-H109S is then evaluated and quantified by qPCR. With the developed ECES approach, we demonstrated that the level of uracil at position Chr4:50566961 in genomic DNA of breast cancer tissues was significantly decreased. Collectively, the ECES method has been proved to be accurate and reproducible in the locus-specific quantification of uracil in genomic DNA from biological and clinical samples.


Assuntos
DNA , Uracila , Uracila/química , DNA/genética , DNA/química , Uracila-DNA Glicosidase/metabolismo , Nucleotídeos , DNA de Cadeia Simples
4.
Anal Chem ; 94(44): 15489-15498, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36280344

RESUMO

DNA methylation (5-methylcytosine, 5mC) is the most prevalent epigenetic modification that is predominantly found in CG dinucleotides in mammalian genomes. In-depth investigation of the functions of 5mC heavily relies on the quantitative measurement of 5mC at single-base resolution in genomes. Here, we proposed a methyltransferase-directed labeling with APOBEC3A (A3A) deamination sequencing (MLAD-seq) method for the single-base resolution and quantitative detection of 5mC in DNA. In MLAD-seq, a mutant of DNA methyltransferase, M.MpeI-N374K, is utilized to selectively transfer a carboxymethyl group to the 5 position of cytosine in the CG dinucleotide to form 5-carboxymethylcytosine (5camC) using carboxy-S-adenosyl-l-methionine (caSAM) as the cofactor. After A3A treatment, 5camC is resistant to the deamination and base pairs with guanine. Thus, the cytosines in CG sites are read as C in sequencing. On the contrary, the methyl group in 5mC inhibits its carboxymethylcytosine by M.MpeI-N374K and therefore is readily deaminated by A3A to produce thymine that pairs with adenine and is read as T in sequencing. The differential readouts from C and 5mC in the MLAD-seq enable the single-base resolution mapping of 5mC in CG sites in DNA. With the developed MLAD-seq method, we observed the hypermethylation in the promoter region of retinoic acid receptor ß (RARB) gene from human nonsmall cell lung tumor tissue. Compared to harsh reaction conditions in bisulfite sequencing that could lead to significant degradation of DNA, the whole procedure of MLAD-seq is carried out under mild conditions, which will avoid DNA damage. Thus, MLAD-seq is more suitable in the scenario where only limited input DNA is available. Taken together, the MLAD-seq offers a valuable tool for bisulfite-free, single-base resolution and quantitative detection of 5mC in limited DNA.


Assuntos
5-Metilcitosina , Metiltransferases , Animais , Humanos , Desaminação , Análise de Sequência de DNA/métodos , Sulfitos , Epigênese Genética , DNA/genética , Citosina , Metilação de DNA , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA