RESUMO
Relativistic positron sources with high spin polarization have important applications in nuclear and particle physics and many frontier fields. However, it is challenging to produce dense polarized positrons. Here we present a simple and effective method to achieve such a positron source by directly impinging a relativistic high-density electron beam on the surface of a solid target. During the interaction, a strong return current of plasma electrons is induced and subsequently asymmetric quasistatic magnetic fields as high as megatesla are generated along the target surface. This gives rise to strong radiative spin flips and multiphoton processes, thus leading to efficient generation of copious polarized positrons. With three-dimensional particle-in-cell simulations, we demonstrate the production of a dense highly polarized multi-GeV positron beam with an average spin polarization above 40% and nC-scale charge per shot. This offers a novel route for the studies of laserless strong-field quantum electrodynamics physics and for the development of high-energy polarized positron sources.
RESUMO
Generation and acceleration of energetic positrons based on laser plasma have attracted intense attention due to their potential applications in medical physics, high energy physics, astrophysics and nuclear physics. However, such compact positron sources face a series of challenges including the beam dispersion, dephasing and unstability. Here, we propose a scheme that couples the all-optical generation of electron-positron pairs and rapid acceleration of copious positrons in the terahertz (THz) field. In the scheme, nanocoulomb-scale electrons are first captured in the wakefield and accelerated to 2.5 GeV. Then these energetic electrons emit strong THz radiation when they go through an aluminum foil. Subsequently, abundant γ photons and positrons are generated during the collision of GeV electron beam and the scattering laser. Due to the strong longitudinal acceleration field and the transvers confining field of the emitted THz wave, the positrons can be efficiently accelerated to 800 MeV, with the peak beam brilliance of 2.26 × 1012s-1mm-2mrad-2eV-1. This can arouse potential research interests from PW-class laser facilities together with a GeV electron beamline.
RESUMO
Electrons can be accelerated to GeV energies with high collimation via laser wakefield acceleration in the bubble regime and emit bright betatron radiation in a table-top size. However, the radiation brightness is usually limited to the third-generation synchrotron radiation facilities operating at similar photon energies. Using a two-stage plasma configuration, we propose a novel scheme for generating betatronlike radiation with an extremely high brilliance. In this scheme, the relativistic electrons inside the bubble injected from the first stage can catch up with the frequency-downshifted laser pulse formed in the second stage. The laser red shift originates from the phase modulation, together with the group velocity dispersion, which enables more energy to be transfered from the laser pulse to γ-photons, giving rise to ultra-brilliant betatronlike radiation. Multi-dimensional particle-in-cell simulations indicate that the radiated γ-photons have the cut-off energy of GeV and a peak brilliance of 1026 photons s-1 mm-2 mrad-2 per 0.1%BW at 1 MeV, which may have diverse applications in various fields.
RESUMO
We propose a scheme for tunable elliptically polarized terahertz (THz) radiation by two-color linearly polarized Laguerre-Gaussian lasers irradiating gas plasmas. Three-dimensional particle-in-cell simulations show that the field strength of THz radiation can achieve MV/cm-scale, and the radiation frequency is determined by the plasma frequency and the electron cyclotron frequency. The emitted THz radiation is Hermite-Gaussian (HG) with a broadband waveform which can be attributed to the axial magnetic fields induced by the twisted drive pulses. Meanwhile, the ellipticity of the emitted THz wave can be effectively tuned by changing the laser intensities and the extra relative phase of the two driving lasers. Thus our scheme provides an efficient and practical approach to acquire tunable HG THz radiation with elliptical polarization, which may own some novel and unique application prospects in various areas.
RESUMO
We investigate dense relativistic electron mirror generation from a micro-droplet driven by circularly polarized Laguerre-Gaussian lasers. The surface electrons are expelled from the droplet by the laser's radial electric field and evolve into dense sheets after leaving the droplet. These electrons are trapped in the potential well of the laser's transverse ponderomotive force and are steadily accelerated to about 100 MeV by the longitudinal electric field. Particle-in-cell simulations indicate that the relativistic electron mirrors are characterized by high beam charge, narrow energy spread, and large angular momentum, which can be utilized for bright X/γ-ray emission and photon vortex formation.
RESUMO
We propose a novel scheme to generate ultra-bright ultra-short γ-ray flashes and high-energy-density attosecond positron bunches by using multi-dimensional particle-in-cell simulations with quantum electrodynamics effects incorporated. By irradiating a 10 PW laser pulse with an intensity of 1023 W/cm2 onto a micro-wire target, surface electrons are dragged-out of the micro-wire and are effectively accelerated to several GeV energies by the laser ponderomotive force, forming relativistic attosecond electron bunches. When these electrons interact with the probe pulse from the other side, ultra-short γ-ray flashes are emitted with an ultra-high peak brightness of 1.8 × 1024 photons s-1mm-2mrad-2 per 0.1%BW at 24 MeV. These photons propagate with a low divergence and collide with the probe pulse, triggering the Breit-Wheeler process. Dense attosecond e-e+ pair bunches are produced with the positron energy density as high as 1017 J/m3 and number of 109. Such ultra-bright ultra-short γ-ray flashes and secondary positron beams may have potential applications in fundamental physics, high-energy-density physics, applied science and laboratory astrophysics.
RESUMO
An all-optical scheme for bright γ-rays and dense e-e+ pair source is proposed by irradiating a 1022 W/cm2 laser onto a near-critical-density plasmas filled Al cone. Two-dimensional (2D) QED particle-in-cell (PIC) simulations show that, a dense electron bunch is confined in the laser field due to the radiation reaction and the trapped electrons oscillate transversely, emitting bright γ-rays forward in two ways: (1) nonlinear Compton scattering due to oscillation of electrons in the laser field, and (2) Compton backwardscattering resulting from the bunch colliding with the reflected laser by the cone tip. Finally, the multi-photon Breit-Wheeler process is initiated, producing abundant e-e+ pairs with a density of â¼ 1027m-3. The scheme is further demonstrated by full 3D PIC simulations, which indicates a positron number up to 2 × 109. This compact γ-rays and e-e+ pair source may have many potential applications, such as the laboratory study of astrophysics and nuclear physics.
RESUMO
By using multidimensional particle-in-cell simulations, we study the electromagnetic emission from radiation pressure acceleration of ultrathin mass-limited foils. When a circularly polarized laser pulse irradiates the foil, the laser radiation pressure pushes the foil forward as a whole. The outer wings of the pulse continue to propagate and act as a natural undulator. Electrons move together with ions longitudinally but oscillate around the latter transversely, forming a self-organized helical electron bunch. When the electron oscillation frequency coincides with the laser frequency as witnessed by the electron, betatronlike resonance occurs. The emitted x rays by the resonant electrons have high brightness, short durations, and broad band ranges which may have diverse applications.
Assuntos
Ciclotrons , Elétrons , Modelos Teóricos , Simulação por Computador , Fenômenos Eletromagnéticos , Gases/química , Espalhamento de Radiação , Raios XRESUMO
By using multidimensional particle-in-cell simulations, we present a new regime of stable proton beam acceleration which takes place when a two-ion-species shaped foil is illuminated by a circularly polarized laser pulse. In the simulations, the lighter protons are nearly instantaneously separated from the heavier carbon ions due to the charge-to-mass ratio difference. The heavy ion layer expands in space and acts to buffer the proton layer from the Rayleigh-Taylor-like (RT) instability that would have otherwise degraded the proton beam acceleration. A simple three-interface model is formulated to explain qualitatively the stable acceleration of the light ions. In the absence of the RT instability, the high quality monoenergetic proton bunch persists even after the laser-foil interaction ends.
RESUMO
Laser-driven positron production is expected to provide a non-radioactive, controllable, radiation tunable positron source in laboratories. We propose a novel approach of positron production by using a femto-second laser irradiating a microstructured surface target combined with a high-Z converter. By numerical simulations, it is shown that both the temperature and the maximum kinetic energy of electrons can be greatly enhanced by using a microstructured surface target instead of a planar target. When these energetic electrons shoot into a high Z converter, copious positrons are produced via Bethe-Heitler mechanism. With a laser (wavelength λ = 1 µm) with duration ~36 fs, intensity ~5.5 × 1020 W/cm2 and energy ~6 Joule, ~109 positrons can be obtained.
RESUMO
Recent developments in laser-wakefield accelerators have led to compact ultrashort X/γ-ray sources that can deliver peak brilliance comparable with conventional synchrotron sources. Such sources normally have low efficiencies and are limited to 107-8 photons/shot in the keV to MeV range. We present a novel scheme to efficiently produce collimated ultrabright γ-ray beams with photon energies tunable up to GeV by focusing a multi-petawatt laser pulse into a two-stage wakefield accelerator. This high-intensity laser enables efficient generation of a multi-GeV electron beam with a high density and tens-nC charge in the first stage. Subsequently, both the laser and electron beams enter into a higher-density plasma region in the second stage. Numerical simulations demonstrate that more than 1012 γ-ray photons/shot are produced with energy conversion efficiency above 10% for photons above 1 MeV, and the peak brilliance is above 1026 photons s-1 mm-2 mrad-2 per 0.1% bandwidth at 1 MeV. This offers new opportunities for both fundamental and applied research.
RESUMO
Generation of attosecond bunches of energetic electrons offers significant potential from ultrafast physics to novel radiation sources. However, it is still a great challenge to stably produce such electron beams with lasers, since the typical subfemtosecond electron bunches from laser-plasma interactions either carry low beam charge, or propagate for only several tens of femtoseconds. Here we propose an all-optical scheme for generating dense attosecond electron bunches via the interaction of an intense Laguerre-Gaussian (LG) laser pulse with a nanofiber. The dense bunch train results from the unique field structure of a circularly polarized LG laser pulse, enabling each bunch to be phase-locked and accelerated forward with low divergence, high beam charge and large beam-angular-momentum. This paves the way for wide applications in various fields, e.g., ultrabrilliant attosecond x/γ-ray emission.
RESUMO
Matter can be transferred into energy and the opposite transformation is also possible by use of high-power lasers. A laser pulse in plasma can convert its energy into γ-rays and then e - e + pairs via the multi-photon Breit-Wheeler process. Production of dense positrons at GeV energies is very challenging since extremely high laser intensity ~1024 Wcm-2 is required. Here we propose an all-optical scheme for ultra-bright γ-ray emission and dense positron production with lasers at intensity of 1022-23 Wcm-2. By irradiating two colliding elliptically-polarized lasers onto two diamondlike carbon foils, electrons in the focal region of one foil are rapidly accelerated by the laser radiation pressure and interact with the other intense laser pulse which penetrates through the second foil due to relativistically induced foil transparency. This symmetric configuration enables efficient Compton back-scattering and results in ultra-bright γ-photon emission with brightness of ~1025 photons/s/mm2/mrad2/0.1%BW at 15 MeV and intensity of 5 × 1023 Wcm-2. Our first three-dimensional simulation with quantum-electrodynamics incorporated shows that a GeV positron beam with density of 2.5 × 1022 cm-3 and flux of 1.6 × 1010/shot is achieved. Collective effects of the pair plasma may be also triggered, offering a window on investigating laboratory astrophysics at PW laser facilities.
RESUMO
Pair production can be triggered by high-intensity lasers via the Breit-Wheeler process. However, the straightforward laser-laser colliding for copious numbers of pair creation requires light intensities several orders of magnitude higher than possible with the ongoing laser facilities. Despite the numerous proposed approaches, creating high-energy-density pair plasmas in laboratories is still challenging. Here we present an all-optical scheme for overdense pair production by two counter-propagating lasers irradiating near-critical-density plasmas at only â¼1022 W cm-2. In this scheme, bright γ-rays are generated by radiation-trapped electrons oscillating in the laser fields. The dense γ-photons then collide with the focused counter-propagating lasers to initiate the multi-photon Breit-Wheeler process. Particle-in-cell simulations indicate that one may generate a high-yield (1.05 × 1011) overdense (4 × 1022 cm-3) GeV positron beam using 10 PW scale lasers. Such a bright pair source has many practical applications and could be basis for future compact high-luminosity electron-positron colliders.