Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 49(9): 2413-2416, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691732

RESUMO

A novel, to the best of our knowledge, cross-spectral optical computing imaging experiment has been achieved through a single exposure of a charge-coupled device. The experimental setup integrates single-pixel imaging (SPI) with ghost imaging (GI) through a photoelectric conversion circuit and a synchronous modulation system. The experimental process involves modulation in one wavelength band (in SPI) and demodulation using the GI algorithm in another. Significantly, our approach utilizes optical computing demodulation, a departure from the conventional electronic demodulation in GI (SPI), which involves the convolution between the bucket optical signals and the modulated patterns on the digital micromirror device. A proof-of-concept cross-band imaging experiment from near-infrared to visible light has been carried out. The results highlight the system's ability to capture images at up to 20 frames per second using near-infrared illumination, which are then reconstructed in the visible light spectrum. This success not only validates the feasibility of our approach but also expands the potential applications in the SPI or GI fields, particularly in scenarios where two-dimensional detector arrays are either unavailable or prohibitively expensive in certain electromagnetic spectra such as x-ray and terahertz.

2.
Sensors (Basel) ; 24(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339728

RESUMO

Optical encryption based on single-pixel imaging (SPI) has made great advances with the introduction of deep learning. However, the use of deep neural networks usually requires a long training time, and the networks need to be retrained once the target scene changes. With this in mind, we propose an SPI encryption scheme based on an attention-inserted physics-driven neural network. Here, an attention module is used to encrypt the single-pixel measurement value sequences of two images, together with a sequence of cryptographic keys, into a one-dimensional ciphertext signal to complete image encryption. Then, the encrypted signal is fed into a physics-driven neural network for high-fidelity decoding (i.e., decryption). This scheme eliminates the need for pre-training the network and gives more freedom to spatial modulation. Both simulation and experimental results have demonstrated the feasibility and eavesdropping resistance of this scheme. Thus, it will lead SPI-based optical encryption closer to intelligent deep encryption.

3.
Cell Death Dis ; 15(5): 336, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744865

RESUMO

Fibrosis is a reparative and progressive process characterized by abnormal extracellular matrix deposition, contributing to organ dysfunction in chronic diseases. The tumor suppressor p53 (p53), known for its regulatory roles in cell proliferation, apoptosis, aging, and metabolism across diverse tissues, appears to play a pivotal role in aggravating biological processes such as epithelial-mesenchymal transition (EMT), cell apoptosis, and cell senescence. These processes are closely intertwined with the pathogenesis of fibrotic disease. In this review, we briefly introduce the background and specific mechanism of p53, investigate the pathogenesis of fibrosis, and further discuss p53's relationship and role in fibrosis affecting the kidney, liver, lung, and heart. In summary, targeting p53 represents a promising and innovative therapeutic approach for the prevention and treatment of organ fibrosis.


Assuntos
Fibrose , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Animais , Transição Epitelial-Mesenquimal , Apoptose , Terapia de Alvo Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA