Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nano Lett ; 24(26): 7999-8007, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38900975

RESUMO

The rapid increase in data storage worldwide demands a substantial amount of energy consumption annually. Studies looking at low power consumption accompanied by high-performance memory are essential for next-generation memory. Here, Graphdiyne oxide (GDYO), characterized by facile resistive switching behavior, is systematically reported toward a low switching voltage memristor. The intrinsic large, homogeneous pore-size structure in GDYO facilitates ion diffusion processes, effectively suppressing the operating voltage. The theoretical approach highlights the remarkably low diffusion energy of the Ag ion (0.11 eV) and oxygen functional group (0.6 eV) within three layers of GDYO. The Ag/GDYO/Au memristor exhibits an ultralow operating voltage of 0.25 V with a GDYO thickness of 5 nm; meanwhile, the thicker GDYO of 29 nm presents multilevel memory with an ON/OFF ratio of up to 104. The findings shed light on memory resistive switching behavior, facilitating future improvements in GDYO-based devices toward opto-memristors, artificial synapses, and neuromorphic applications.

2.
Small ; 15(3): e1804661, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30548912

RESUMO

Photoinduced memory devices with fast program/erase operations are crucial for modern communication technology, especially for high-throughput data storage and transfer. Although some photoinduced memories based on 2D materials have already demonstrated desirable performance, the program/erase speed is still limited to hundreds of micro-seconds. A high-speed photoinduced memory based on MoS2 /single-walled carbon nanotubes (SWCNTs) network mixed-dimensional van der Waals heterostructure is demonstrated here. An intrinsic ultrafast charge transfer occurs at the heterostructure interface between MoS2 and SWCNTs (below 50 fs), therefore enabling a record program/erase speed of ≈32/0.4 ms, which is faster than that of the previous reports. Furthermore, benefiting from the unique device structure and material properties, while achieving high-speed program/erase operation, the device can simultaneously obtain high program/erase ratio (≈106 ), appropriate storage time (≈103  s), record-breaking detectivity (≈1016  Jones) and multibit storage capacity with a simple program/erase operation. It even has a potential application as a flexible optoelectronic device. Therefore, the designed concept here opens an avenue for high-throughput fast data communications.

3.
Nano Lett ; 17(1): 453-459, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27983857

RESUMO

Semiconducting transition metal dichalcogenides (TMDs) are promising materials for photodetection over a wide range of visible wavelengths. Photodetection is generally realized via a phototransistor, photoconductor, p-n junction photovoltaic device, and thermoelectric device. The photodetectivity, which is a primary parameter in photodetector design, is often limited by either low photoresponsivity or a high dark current in TMDs materials. Here, we demonstrated a highly sensitive photodetector with a MoS2/h-BN/graphene heterostructure, by inserting a h-BN insulating layer between graphene electrode and MoS2 photoabsorber, the dark-carriers were highly suppressed by the large electron barrier (2.7 eV) at the graphene/h-BN junction while the photocarriers were effectively tunneled through small hole barrier (1.2 eV) at the MoS2/h-BN junction. With both high photocurrent/dark current ratio (>105) and high photoresponsivity (180 AW-1), ultrahigh photodetectivity of 2.6 × 1013 Jones was obtained at 7 nm thick h-BN, about 100-1000 times higher than that of previously reported MoS2-based devices.

4.
Nat Mater ; 12(3): 246-52, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23241535

RESUMO

Graphene has attracted considerable interest for future electronics, but the absence of a bandgap limits its direct applicability in transistors and logic devices. Recently, other layered materials such as molybdenum disulphide (MoS(2)) have been investigated to address this challenge. Here, we report the vertical integration of multi-heterostructures of layered materials for the fabrication of a new generation of vertical field-effect transistors (VFETs) with a room temperature on-off ratio > 10(3) and a high current density of up to 5,000 A cm(-2). An n-channel VFET is created by sandwiching few-layer MoS(2) as the semiconducting channel between a monolayer graphene sheet and a metal thin film. This approach offers a general strategy for the vertical integration of p- and n-channel transistors for high-performance logic applications. As an example, we demonstrate a complementary inverter with a larger-than-unity voltage gain by vertically stacking graphene, Bi(2)Sr(2)Co(2)O(8) (p-channel), graphene, MoS(2) (n-channel) and a metal thin film in sequence. The ability to simultaneously achieve a high on-off ratio, a high current density and a logic function in such vertically stacked multi-heterostructures can open up possibilities for three-dimensional integration in future electronics.


Assuntos
Eletrônica/instrumentação , Transistores Eletrônicos , Dissulfetos/química , Eletrodos , Desenho de Equipamento , Grafite/química , Lógica , Molibdênio/química
5.
Nat Mater ; 12(5): 403-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23455851

RESUMO

Despite recent progress in producing transparent and bendable thin-film transistors using graphene and carbon nanotubes, the development of stretchable devices remains limited either by fragile inorganic oxides or polymer dielectrics with high leakage current. Here we report the fabrication of highly stretchable and transparent field-effect transistors combining graphene/single-walled carbon nanotube (SWCNT) electrodes and a SWCNT-network channel with a geometrically wrinkled inorganic dielectric layer. The wrinkled Al2O3 layer contained effective built-in air gaps with a small gate leakage current of 10(-13) A. The resulting devices exhibited an excellent on/off ratio of ~10(5), a high mobility of ~40 cm(2) V(-1) s(-1) and a low operating voltage of less than 1 V. Importantly, because of the wrinkled dielectric layer, the transistors retained performance under strains as high as 20% without appreciable leakage current increases or physical degradation. No significant performance loss was observed after stretching and releasing the devices for over 1,000 times. The sustainability and performance advances demonstrated here are promising for the adoption of stretchable electronics in a wide variety of future applications.

6.
ACS Appl Mater Interfaces ; 16(22): 29421-29438, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776481

RESUMO

2D/2D step-scheme (S-scheme) piezo-photocatalysts for the production of fine chemicals, such as hydrogen peroxide (H2O2), have attracted significant attention of global scientists owing to the efficiency in utilizing surface piezoelectric effects from 2D materials to overcome rapid charge recombination in photocatalytic processes. In this research, we reported the fabrication of 2D S-doped VOx deposited on 2D g-C3N4 to produce H2O2 via the piezo-photocatalytic process with high production yields at 20.19 mmol g-1 h-1, which was 1.75 and 4.87 times higher than that from solely piezo-catalytic and photocatalytic H2O2 generation. The finding pointed out that adding sulfur (S) to VOx can help to improve the catalytic outcomes by modifying the electronic properties of pristine VOx. In addition, when coupled with g-C3N4, the presence of S limits the formation of graphene in the VOx/g-C3N4 composites, causing shielding effects and pushing the cascade reactions toward water generation in the materials. Besides, the research also sheds light on the charge transport between g-C3N4 and S-VOx under irradiation and how the composites work to trigger the formation of H2O2. The presence of S in the composite systems enhances charge transfer between two semiconductors by strengthening the internal electric fields (IEF) to drive electrons moving in one direction, as demonstrated by density functional theory (DFT) calculations. Moreover, the formation of H2O2 significantly relies on the reduction of oxygen to generate oxygenic radical species at the g-C3N4 sites. Meanwhile, S-VOx provides oxidative sites in the composites to oxidize water molecules to directly or indirectly generate H2O2 or O2, which will further participate in the reactions to produce the final products. This study confirms the validation of S-scheme piezo-photocatalysts, thus encouraging further research on developing heterojunction materials with high catalytic efficiency, which can be used in practical conditions.

7.
Small Methods ; : e2400797, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082067

RESUMO

Hydrogen peroxide (H2O2) production via oxygen (O2) reduction reaction (ORR) in pure water (H2O) through graphitic carbon nitrides (g-C3N4)-based piezo-photocatalysts is an exciting approach in many current studies. However, the low Lewis-acid properties of g-C3N4 limited the catalytic performance because of the low O2 adsorption efficacy. To overcome this challenge, the interaction of g-C3N4 precursors with various solvents are utilized to synthesize g-C3N4, possessing multiple nitrogen-vacant species via thermal shocking polymerization. These results suggest that the lack of nitrogen in g-C3N4 and the incident introduction of oxygen-functional groups enhance the Lewis acid-base interactions and polarize the g-C3N4 lattices, leading to the enormous enhancement. Furthermore, the catalytic mechanisms are thoroughly studied, with the formation of H2O2 proceeding via radical and water oxidation pathways, in which the roles of light and ultrasound are carefully investigated. Thus, these findings not only reinforce the potential view of metal-free photocatalysts, accelerating the understanding of g-C3N4 working principles to generate H2O2 based on the oxygen reduction and water oxidation reactions, but also propose a facile one-step way for fabricating highly efficient and scalable photocatalysts to produce H2O2 without using sacrificial agents, pushing the practical application of in situ solar H2O2 toward real-world scenarios.

8.
Nat Commun ; 14(1): 3070, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244897

RESUMO

Multi-terminal memristor and memtransistor (MT-MEMs) has successfully performed complex functions of heterosynaptic plasticity in synapse. However, theses MT-MEMs lack the ability to emulate membrane potential of neuron in multiple neuronal connections. Here, we demonstrate multi-neuron connection using a multi-terminal floating-gate memristor (MT-FGMEM). The variable Fermi level (EF) in graphene allows charging and discharging of MT-FGMEM using horizontally distant multiple electrodes. Our MT-FGMEM demonstrates high on/off ratio over 105 at 1000 s retention about ~10,000 times higher than other MT-MEMs. The linear behavior between current (ID) and floating gate potential (VFG) in triode region of MT-FGMEM allows for accurate spike integration at the neuron membrane. The MT-FGMEM fully mimics the temporal and spatial summation of multi-neuron connections based on leaky-integrate-and-fire (LIF) functionality. Our artificial neuron (150 pJ) significantly reduces the energy consumption by 100,000 times compared to conventional neurons based on silicon integrated circuits (11.7 µJ). By integrating neurons and synapses using MT-FGMEMs, a spiking neurosynaptic training and classification of directional lines functioned in visual area one (V1) is successfully emulated based on neuron's LIF and synapse's spike-timing-dependent plasticity (STDP) functions. Simulation of unsupervised learning based on our artificial neuron and synapse achieves a learning accuracy of 83.08% on the unlabeled MNIST handwritten dataset.

9.
Adv Mater ; 35(15): e2209089, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36655805

RESUMO

Modulating semiconducting channel potential has been used for electrical switching in transistors without biological plasticity operations that are critical for energy-efficient neuromorphic computing. To achieve efficient data processing, alternative transport mechanisms, such as tunneling and thermionic emission, have been introduced with 2D materials. Here, a polymorphic memtransistor based on atomically thin Mo0.91 W0.09 Te2 is presented, where the lattice and electronic structures of the lateral device channel can be tuned as either metallic (1T') or semiconducting (2H) phases by electrical gating. The structural and electronic phase change of the channel material, optimized in Mo0.91 W0.09 Te2 , is explored using transport and optical measurements at the device scale. Based on the phase transition, the polymorphic memtransistor demonstrates a high on/off ratio (up to 105 ), low subthreshold swing (down to 80 mV dec-1 ), and various memristive behaviors, which are distinguished from traditional phase-change memory, transistors, and passive memristors for diverse neuromorphic and in-memory computing.

10.
Adv Sci (Weinh) ; 10(25): e2300925, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37424035

RESUMO

Graphdiyne (GDY), a new 2D material, has recently proven excellent performance in photodetector applications due to its direct bandgap and high mobility. Different from the zero-gap of graphene, these preeminent properties made GDY emerge as a rising star for solving the bottleneck of graphene-based inefficient heterojunction. Herein, a highly effective graphdiyne/molybdenum (GDY/MoS2 ) type-II heterojunction in a charge separation is reported toward a high-performance photodetector. Characterized by robust electron repulsion of alkyne-rich skeleton, the GDY based junction facilitates the effective electron-hole pairs separation and transfer. This results in significant suppression of Auger recombination up to six times at the GDY/MoS2 interface compared with the pristine materials owing to an ultrafast hot hole transfer from MoS2 to GDY. GDY/MoS2 device demonstrates notable photovoltaic behavior with a short-circuit current of -1.3 × 10-5 A and a large open-circuit voltage of 0.23 V under visible irradiation. As a positive-charge-attracting magnet, under illumination, alkyne-rich framework induces positive photogating effect on the neighboring MoS2 , further enhancing photocurrent. Consequently, the device exhibits broadband detection (453-1064 nm) with a maximum responsivity of 78.5 A W-1 and a high speed of 50 µs. Results open up a new promising strategy using GDY toward effective junction for future optoelectronic applications.

11.
Nano Lett ; 11(11): 4759-63, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21985035

RESUMO

The bilayer graphene has attracted considerable attention for potential applications in future electronics and optoelectronics because of the feasibility to tune its band gap with a vertical displacement field to break the inversion symmetry. Surface chemical doping in bilayer graphene can induce an additional offset voltage to fundamentally affect the vertical displacement field and the band gap opening in bilayer graphene. In this study, we investigate the effect of chemical molecular doping on band gap opening in bilayer graphene devices with single or dual gate modulation. Chemical doping with benzyl viologen molecules modulates the displacement field to allow the opening of a transport band gap and the increase of the on/off ratio in the bilayer graphene transistors. Additionally, Fermi energy level in the opened gap can be rationally controlled by the amount of molecular doping to obtain bilayer graphene transistors with tunable Dirac points, which can be readily configured into functional devices, such as complementary inverters.


Assuntos
Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
12.
Nano Lett ; 11(3): 1344-50, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21322606

RESUMO

We report small hysteresis integrated circuits by introducing monolayer graphene for the electrodes and a single-walled carbon nanotube network for the channel. Small hysteresis of the device originates from a defect-free graphene surface, where hysteresis was modulated by oxidation. This uniquely combined nanocarbon material device with transparent and flexible properties shows remarkable device performance; subthreshold voltage of 220 mV decade(-1), operation voltage of less than 5 V, on/off ratio of approximately 10(4), mobility of 81 cm(2) V(-1) s(-1), transparency of 83.8% including substrate, no significant transconductance changes in 1000 times of bending test, and only 36% resistance decrease at a tensile strain of 50%. Furthermore, because of the nearly Ohmic contact nature between the graphene and carbon nanotubes, this device demonstrated a contact resistance 100 times lower and a mobility 20 times higher, when compared to an Au electrode.

13.
Nat Commun ; 13(1): 4556, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961959

RESUMO

The device's integration of molecular electronics is limited regarding the large-scale fabrication of gap electrodes on a molecular scale. The van der Waals integration (vdWI) of a vertically aligned molecular layer (0D) with 2D or 3D electrodes indicates the possibility of device's integration; however, the active junction area of 0D-2D and 0D-3D vdWIs remains at a microscale size. Here, we introduce the robust fabrication of a vertical 1D-0D-1D vdWI device with the ultra-small junction area of 1 nm2 achieved by cross-stacking top carbon nanotubes (CNTs) on molecularly assembled bottom CNTs. 1D-0D-1D vdWI memories are demonstrated through ferroelectric switching of azobenzene molecules owing to the cis-trans transformation combined with the permanent dipole moment of the end-tail -CF3 group. In this work, our 1D-0D-1D vdWI memory exhibits a retention performance above 2000 s, over 300 cycles with an on/off ratio of approximately 105 and record current density (3.4 × 108 A/cm2), which is 100 times higher than previous study through the smallest junction area achieved in a vdWI. The simple stacking of aligned CNTs (4 × 4) allows integration of memory arrays (16 junctions) with high device operational yield (100%), offering integration guidelines for future molecular electronics.

14.
ACS Nano ; 16(8): 12073-12082, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35913119

RESUMO

In this study, selective Nb doping (P-type) at the WS2 layer in a WS2-MoS2 lateral heterostructure via a chemical vapor deposition (CVD) method using a solution-phase precursor containing W, Mo, and Nb atoms is proposed. The different chemical activity reactivity (MoO3 > WO3 > Nb2O5) enable the separation of the growth temperature of intrinsic MoS2 to 700 °C (first grown inner layer) and Nb-doped WS2 to 800 °C (second grown outer layer). By controlling the Nb/(W+Nb) molar ratio in the solution precursor, the hole carrier density in the p-type WS2 layer is selectively controlled from approximately 1.87 × 107/cm2 at 1.5 at.% Nb to approximately 1.16 × 1013/cm2 at 8.1 at.% Nb, while the electron carrier density in n-type MoS2 shows negligible change with variation of the Nb molar ratio. As a result, the electrical behavior of the WS2-MoS2 heterostructure transforms from the N-N junction (0 at.% Nb) to the P-N junction (4.5 at.% Nb) and the P-N tunnel junction (8.1 at.% Nb). The band-to-band tunneling at the P-N tunnel junction (8.1 at.% Nb) is eliminated by applying negative gate bias, resulting in a maximum rectification ratio (105) and a minimum channel resistance (108 Ω). With this optimized photodiode (8.1 at.% Nb at Vg = -30 V), an Iphoto/Idark ratio of 6000 and a detectivity of 1.1 × 1014 Jones are achieved, which are approximately 20 and 3 times higher, respectively, than the previously reported highest values for CVD-grown transition-metal dichalcogenide P-N junctions.

15.
Sci Adv ; 7(20)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33990331

RESUMO

The dynamic processing of optoelectronic signals carrying temporal and sequential information is critical to various machine learning applications including language processing and computer vision. Despite extensive efforts to emulate the visual cortex of human brain, large energy/time overhead and extra hardware costs are incurred by the physically separated sensing, memory, and processing units. The challenge is further intensified by the tedious training of conventional recurrent neural networks for edge deployment. Here, we report in-sensor reservoir computing for language learning. High dimensionality, nonlinearity, and fading memory for the in-sensor reservoir were achieved via two-dimensional memristors based on tin sulfide (SnS), uniquely having dual-type defect states associated with Sn and S vacancies. Our in-sensor reservoir computing demonstrates an accuracy of 91% to classify short sentences of language, thus shedding light on a low training cost and the real-time solution for processing temporal and sequential signals for machine learning applications at the edge.

16.
ACS Nano ; 15(8): 13031-13040, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34350752

RESUMO

van der Waals heterostructures (vdWHs) of metallic (m-) and semiconducting (s-) transition-metal dichalcogenides (TMDs) exhibit an ideal metal/semiconductor (M/S) contact in a field-effect transistor. However, in the current two-step chemical vapor deposition process, the synthesis of m-TMD on pregrown s-TMD contaminates the van der Waals (vdW) interface and hinders the doping of s-TMD. Here, NbSe2/Nb-doped-WSe2 metal-doped-semiconductor (M/d-S) vdWHs are created via a one-step synthesis approach using a niobium molar ratio-controlled solution-phase precursor. The one-step growth approach synthesizes Nb-doped WSe2 with a controllable doping concentration and metal/doped-semiconductor vdWHs. The hole carrier concentration can be precisely controlled by controlling the Nb/(W + Nb) molar ratio in the precursor solution from ∼3 × 1011/cm2 at Nb-0% to ∼1.38 × 1012/cm2 at Nb-60%; correspondingly, the contact resistance RC value decreases from 10 888.78 at Nb-0% to 70.60 kΩ.µm at Nb-60%. The Schottky barrier height measurement in the Arrhenius plots of ln(Isat/T2) versus q/KBT demonstrated an ohmic contact in the NbSe2/WxNb1-xSe2 vdWHs. Combining p-doping in WSe2 and M/d-S vdWHs, the mobility (27.24 cm2 V-1 s-1) and on/off ratio (2.2 × 107) are increased 1238 and 4400 times, respectively, compared to that using the Cr/pure-WSe2 contact (0.022 cm2 V-1 s-1 and 5 × 103, respectively). Together, the RC value using the NbSe2 contact shows 2.46 kΩ.µm, which is ∼29 times lower than that of using a metal contact. This method is expected to guide the synthesis of various M/d-S vdWHs and applications in future high-performance integrated circuits.

17.
ACS Appl Mater Interfaces ; 13(15): 18056-18064, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33827208

RESUMO

Two-dimensional transition metal dichalcogenides (TMDs) offer numerous advantages over silicon-based application in terms of atomically thin geometry, excellent opto-electrical properties, layer-number dependence, band gap variability, and lack of dangling bonds. The production of high-quality and large-scale TMD films is required with consideration of practical technology. However, the performance of scalable devices is affected by problems such as contamination and patterning arising from device processing; this is followed by an etching step, which normally damages the TMD film. Herein, we report the direct growth of MoSe2 films on selective pattern areas via a surface-mediated liquid-phase promoter using a solution-based approach. Our growth process utilizes the promoter on the selective pattern area by enhancing wettability, resulting in a highly uniform MoSe2 film. Moreover, our approach can produce other TMD films such as WSe2 films as well as control various pattern shapes, sizes, and large-scale areas, thus improving their applicability in various devices in the future. Our patterned MoSe2 field-effect transistor device exhibits a p-type dominant conduction behavior with a high on/off current ratio of ∼106. Thus, our study provides general guidance for direct selective pattern growth via a solution-based approach and the future design of integrated devices for a large-scale application.

18.
J Nanosci Nanotechnol ; 10(6): 3934-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20355394

RESUMO

Carbon nanotubes (CNTs) were implanted with thermally decomposed oxygen (O2+) and nitrogen (N2+) ions at an acceleration voltage of 20 V. With a low dose of oxygen ions, the CNT-FET exhibited p-type behaviors with substantial changes in threshold voltage and in the slope of the source-drain current (l(sd)). However, at high dosages, the device exhibited metallic behaviors. After nitrogen doping, we did not observe the effects of electron doping. Instead, nitrogen doping significantly increased l(sd) with no gating effect. Our theoretical results showed that the metallic behavior of nitrogen-doped CNTs arose from the impurity conduction band, which results from the overlapping wave function of the nitrogen impurity.

19.
Nano Lett ; 9(4): 1401-5, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19281215

RESUMO

A CMOS-like inverter was integrated by using ambipolar carbon nanotube (CNT) transistors without doping. The ambipolar CNT transistors automatically configure themselves to play a role as an n-type or p-type transistor in a logic circuit depending on the supply voltage (V(DD)) and ground. A NOR (NAND) gate is adaptively converted to a NAND (NOR) gate. This adaptiveness of logic gates exhibiting two logic gate functions in a single logic circuit offers a new opportunity for designing logic circuits with high integration density for next generation applications.

20.
Sci Rep ; 10(1): 3441, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32115574

RESUMO

We report a black silicon-carbon nanotube (bSi-CNT) hybrid structure for ultrahigh absorbance at wide spectral range of wavelength (300-1200 nm). CNTs are densely grown on entire bSi stems by chemical vapor deposition (CVD) through uniformly coating Fe catalyst. The bSi-CNT not only increases the surface roughness for enhancing the light suppression, but also allows the absorption of light in a wide wavelength range over the Si band gap (>1000 nm owing to 1.1 eV) due to the small band gap of CNT (0.6 eV). At short wavelength below Si band gap (<1000 nm), the absorbance of bSi-CNT shows average of 98.1%, while bSi shows 89.4%, which is because of high surface roughness of bSi-CNT that enhancing the light trapping. At long wavelength over Si band gap, the absorbance of bSi-CNT was maintained to 96.3% because of the absorption in CNT, while absorbance of bSi abruptly reduces with increase wavelength. Especially, the absorbance of bSi-CNT was showed 93.5% at 1200 nm, which is about 30~90% higher than previously reported bSi. Simple growth of CNTs on bSi can dramatically enhances the absorbance without using any antireflection coating layer. Thus, this study can be employed for realizing high efficiency photovoltaic, photocatalytic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA