RESUMO
BACKGROUND: The preharvest application of Ca-containing foliar fertilizers can reduce the incidence of bitter pit (BP) in apples and improve fruit quality by increasing the Ca content and decreasing both the N content and the N/Ca ratio in fruits. In this study, we aimed to investigate the control efficacy of Ca-containing fertilizers on the incidence of BP and their effects on the Ca and N contents in bagged 'Fuji' apples by spraying foliar fertilizer containing calcium chloride (CaCl2 ), calcium nitrate [Ca(NO3 )2 ] or calcium formate [Ca(HCOO)2 ] at an early stage, five days after full bloom (DAFB) and 40 DAFB, and at a late stage, 80 DAFB and 125 DAFB. RESULTS: The incidences of BP were reduced significantly by 43.2-73.0%, and the efficacy of spraying at an early stage was significantly higher than that of spraying at a late stage. The Ca content of bagged apple fruits increased whereas the N content and N/Ca ratio decreased after spraying Ca-containing foliar fertilizers; however, the Ca content, N content and N/Ca ratio of apple leaves were differentially influenced. CONCLUSION: Foliar fertilizer containing CaCl2, Ca(NO3 )2 or Ca(HCOO)2 can be used at an early stage to control BP in apple and improve the quality of bagged apple fruits. © 2018 Society of Chemical Industry.
Assuntos
Cálcio/análise , Fertilizantes/análise , Malus/química , Nitrogênio/análise , Cálcio/metabolismo , Cloreto de Cálcio/análise , Cloreto de Cálcio/metabolismo , Compostos de Cálcio/análise , Compostos de Cálcio/metabolismo , Formiatos/análise , Formiatos/metabolismo , Frutas/química , Frutas/metabolismo , Humanos , Malus/metabolismo , Nitratos/análise , Nitratos/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , PaladarRESUMO
Persimmon leaves are used for making persimmon leaf tea or as functional ingredients due to their enrichment in flavonoids, the beneficial mineral contents, and favorable flavors contributed by volatile aroma compounds. The varieties/cultivars had a significant influence on the quality and flavor of persimmon leaf tea. In this study, the integrated metabolomic-transcriptomic analysis was conducted to investigate the potential in flavonoid biosynthesis, mineral absorption, and degradation of aromatic compounds from tender leaves of "Diospyros kaki. Heishi" (HS), "Diospyros kaki Thunb. Nishimurawase" (NM), and "Diospyros kaki Thunb. Taifu" (TF), using rootstock "Diospyros Lotus Linn" (DL) as the control. The metabolomic analysis showed that 382, 391, and 368 metabolites were differentially accumulated in the comparison of DL vs. HS, DL vs. NM, and DL vs. TF, respectively, and 229 common metabolites were obtained by comparative analysis. By RNA sequencing, 182,008 unigenes with 652 bp of mean length were annotated and 2,598, 3,503, and 3,333 differentially expressed genes (DEGs) were detected from the comparison of DL vs. HS, DL vs. NM, and DL vs. TF, respectively. After the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, 6, 6, and 3 DEGs [with | log2(fold change)| ≥ 1 simultaneously in the three comparisons] involved in flavonoid biosynthesis, mineral absorption, and degradation of aromatic compounds, respectively, were selected for quantitative reverse transcription-polymerase chain reaction (qRT-PCR) validation and the consistent trends of the relative expression level of each DEG with RNA sequencing (RNA-seq) data were observed. Based on the transcriptomic analysis and qRT-PCR validation, it was observed that the leaves of HS, NM, and TF had the greatest level of mineral absorption, flavonoid biosynthesis, and degradation of aromatic compounds, respectively. In addition, a positive correlation between the 15 DEGs and their metabolites was observed by the conjoint analysis. Thus, the tender leaves of HS, NM, and TF could be recommended for the production of persimmon leaf tea rich in mineral elements, flavonoid, and aroma compounds, respectively.
RESUMO
To investigate the effects of H2S on mitochondrial functions under low temperature stress, we analyzed the effects of 0.05 mmol·L-1 NaHS and 15 µmmol·L-1 HT (hypotaurine and H2S scavenger) on mitochondria antioxidant enzyme activities and mitochondrial permeability transition pore, mitochondrial membrane fluidity, mitochondrial membrane potential, Cyt c/a ratio and H+-ATPase activity in sweet cherry stigma and ovary with sweet cherry variety Zaodaguo under -2 â low temperature stress. The results showed that low temperature stress increased the concentrations of mitochondrial H2O2 and MDA, enhanced the mitochondrial membrane permeability, but decreased the mitochondrial membrane fluidity, membrane potential, Cyt c/a and H+-ATPase acti-vity. Application of NaHS at 0.05 mmol·L-1 could effectively reduce the concentrations of H2O2 and MDA, and keep higher activities of SOD, POD and CAT of mitochondrial for longer time. Furthermore, application of 0.05 mmol·L-1 NaHS could decrease mitochondrial membrane permeability while increase mitochondrial membrane fluidity, membrane potential, Cyt c/a and H+-ATPase activity in stigma and ovary under low temperature stress. The effects of NaHS were completely offset by HT addition. The results suggested that exogenous H2S could alleviate the oxidative damage on stigma and ovary stress through decreasing H2O2 accumulation, regulating mitochondria antioxidant system, increasing H+-ATPase activity, and mitigating mitochondria function under low temperature.
Assuntos
Sulfeto de Hidrogênio , Prunus avium , Feminino , Peróxido de Hidrogênio , Mitocôndrias , Ovário , Estresse Oxidativo , TemperaturaRESUMO
Sugar-acetic acid-ethanol-water mixture (SAEWM) trapping has initially shown the potential efficacy for monitoring or trapping insects. It is unknown how SAEWM-baited traps affect field number of oriental fruit moth (OFM), Grapholita molesta (Busck) (Lepidoptera: Tortricidae), the female/male ratio trapped, and the type of natural-enemy insects captured. This study investigated changes in seasonal population dynamics and diurnal flight rhythm of OFM, the number and female/male ratio of OFM and the numbers of Coccinellidae and Chrysopidae trapped by SAEWM in peach-apple mixed-planting orchards. The SAEWM performed well in trapping OFM, most of which were adult females, with the maximum trapping at 2.5 m above ground. The daily trapping peak occurred between 18:00 and 20:00, during each continuous monitoring period, with another peak occurring at 4:00-8:00, after the second monitoring period (2-5 July). However, the use of SAEWM also resulted in the trapping of Coccinellidae and Chrysopidae, of which peak trapping time partially overlapped with the second and third peak trapping times of OFM. We suggest the cessation of SAEWM trapping during the peak activity time of Coccinellidae and Chrysopidae, or application of alternative attractive mixture that do not trap the natural enemy insects, in order to protect the ecological balance in the field.