Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Opt Express ; 32(3): 3922-3932, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297602

RESUMO

Uncooled infrared thermal detectors are gaining increasing attention owing to their ability to operate at room-temperature and their low cost. This study proposes a plasmonic optomechanical resonator for ultrasensitive long-wave infrared wave sensing based on mode localization mechanism. The mode-localized effect confines the plasmonic energy in the resonators and induces a significant modal amplitude shift through infrared irradiation, thus achieving highly sensitive detection. The results show that the detection sensitivity can reach 1.304 /mW, which is three-order improvement compared to the frequency-shift sensing metrics. The research provides a new approach to further improve the detection sensitivity of uncooled infrared sensors.

2.
Angew Chem Int Ed Engl ; : e202408382, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806407

RESUMO

Electrochemical nitrate reduction reaction (NO3RR) is a promising approach to achieve remediation of nitrate-polluted wastewater and sustainable production of ammonia. However, it is still restricted by the low activity, selectivity and Faraday efficiency for ammonia synthesis. Herein, we propose an effective strategy to modulate the electrolyte microenvironment in electrical double layer (EDL) by mediating alkali metal cations in the electrolyte to enhance the NO3RR performance. Taking bulk Cu as a model catalyst, the experimental study reveals that the NO3 --to-NH3 performance in different electrolytes follows the trend Li+

3.
Anal Chem ; 95(17): 7036-7044, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37088925

RESUMO

The development of superior probes is highly desirable and valuable for viscosity measurement. Herein, we designed and reported a series of diphenylbenzofulvene (DPBF)-based organic luminophores according to the molecular regulation strategy. There are two free-rotating phenyl groups attached to the rigid fluorene skeleton in the DPBF, enabling its unique propeller-like noncoplanar chemical structure. Benefiting from this, DPBFs could feature outstanding PL and ECL emissions with intriguing aggregation-induced characteristics. Experimental and theoretical investigations revealed that substituent, spatial structure, and molecular orbital energy profoundly affected their luminescent behaviors. It was disclosed that fluoro-substituted DPBF(F)2 with a smaller LUMO-HOMO band gap demonstrated the strongest ECL emission and was selected as the optimal ECL emitter. Finally, DPBF(F)2 featured a linear response to the viscosity and VC content with lower limits of detection (LOD) of 5.69 µcP and 38.2 nM, respectively. This study represents the first example of the ECL probe toward viscosity and will be of great significance for both ECL application and viscosity measurement.

4.
Small ; 19(16): e2206768, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36683212

RESUMO

Developing efficient oxygen evolution reaction (OER) electrocatalysts for seawater electrolysis is still a big challenge. Herein, a facile one-pot approach is reported to synthesize RuO2 -incorporated NiFe-metal organic framework (RuO2 /NiFe-MOF) with unique nanobrick-nanosheet heterostructure as precatalyst. Driven by electric field, the RuO2 /NiFe-MOF dynamically reconstructs into RuO2 nanoparticles-anchored NiFe oxy/hydroxide nanosheets (RuO2 /NiFeOOH) with coherent interface, during which the dissolution and redeposition of RuO2 are witnessed. Owing to the synergistic interaction between RuO2 and NiFeOOH, the as-reconstructed RuO2 /NiFeOOH exhibits outstanding alkaline OER activity with an ultralow overpotential of 187.6 mV at 10 mA cm-2 and a small Tafel slope of 31.9 mV dec-1 and excellent durability at high current densities of 840 and 1040 mA cm-2 in 1 m potassium hydroxide (KOH). When evaluated for seawater oxidation, the RuO2 /NiFeOOH only needs a low overpotential of 326.2 mV to achieve 500 mA cm-2 and can continuously catalyze OER at 500 mA cm-2 for 100 h with negligible activity degradation. Density function theory calculations reveal that the presence of strong interaction and enhanced charge transfer along the coherent interface between RuO2 and NiFeOOH ensures improved OER activity and stability.

5.
Anal Chem ; 94(15): 6036-6043, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35384644

RESUMO

Due to significantly tackling the problems of aggregation-caused quenching and water insolubility, aggregation-induced emission electrochemiluminescence (AIE-ECL) has emerged as a research highlight in aqueous detection and sensing. Herein, we reported a series of cyclopentadienols featuring excellent AIE-ECL properties on the basis of an enhanced aromaticity strategy. In detail, substituents profoundly determined ECL emission by affecting the characteristic absorption peak intensity ratio in UV-vis spectra and lowest unoccupied molecular orbital (LUMO)-highest occupied molecular orbital (HOMO) energies. It was found that 1,2,3,4,5-pentafluorophenyl cyclopentadienol (PFCD) containing an electron-withdrawing fluorine substituent, the maximum R/B band ratio, and a smaller LUMO-HOMO band gap demonstrated the best ECL performance. Meanwhile, such an AIE-ECL system displayed a wide response range toward pH (4-12) with a good linear relationship. Our research not only enriched polycyclic aromatic hydrocarbon-based AIE-ECL systems but also established an efficient pH sensor in the aqueous phase.


Assuntos
Medições Luminescentes , Fotometria , Concentração de Íons de Hidrogênio
6.
Anal Chem ; 94(39): 13607-13615, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36125245

RESUMO

The intriguing aggregation-induced emission has recently been applied in the electrochemiluminescence, called aggregation-induced electrochemiluminescence (AIE-ECL), which is conducive to solving the water insolubility and aggregation-caused quenching for most organic luminescence probes. However, AIE-ECL still has the problems of low luminous efficiency and limited practical application. In this work, we disclosed the AIE-ECL properties of 1,2,3-triaryl-substituted indenes containing rigid structures. Experimental and theoretical investigations demonstrated that such a rigid structure could significantly enhance the aromaticity and stability and thereby the luminescence performance of these indenes. Moreover, according to the finding of hydrogen/deuterium exchange for active hydrogen in indene under electrical excitation, ultrasensitive detection for D2O in H2O was realized by such an indene-based AIE-ECL system. Our research not only provided an attractive strategy to enhance the luminescence property for an AIE-active luminophore but also established a superior sensor toward D2O.


Assuntos
Técnicas Biossensoriais , Indenos , Deutério , Técnicas Eletroquímicas , Medições Luminescentes , Água/química
7.
Small ; 18(2): e2104323, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34738715

RESUMO

With the development of clean hydrogen energy, the cost effective and high-performance hydrogen evolution reaction (HER) electrocatalysts are urgently required. Herein, a green, facile, and time-efficient Ru doping synergistic with air-plasma treatment strategy is reported to boost the HER performance of CoNi-layered double hydroxide (LDH) nanotube arrays (NTAs) derived from zeolitic imidazolate framework nanorods. The Ru doping and air-plasma treatment not only regulate the oxygen vacancy to optimize the electron structure but also increase the surface roughness to improve the hydrophilicity and hydrogen spillover efficiency. Therefore, the air plasma treated Ru doped CoNi-LDH (P-Ru-CoNi-LDH) nanotube arrays display superior HER performance with an overpotential of 29 mV at a current density of 10 mA cm-2 . Furthermore, by assembling P-Ru-CoNi-LDH as both cathode and anode for two-electrode urea-assisted water electrolysis, a small cell voltage of 1.36 V is needed at 10 mA cm-2 and can last for 100 h without any obvious activity attenuation that showing outstanding durability. In general, the P-Ru-CoNi-LDH can improve the HER performance from intrinsic electronic structure regulation cooperated with extrinsic surface wettability modification. These findings provide an effective intrinsic and extrinsic synergistic effect avenue to develop high performance HER electrocatalysts, which is potential to be applied to other research fields.

8.
Small ; 18(1): e2104958, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34825485

RESUMO

The efficiency of CO2 electroreduction has been largely limited by the activity of the catalysts as well as the three-phase interface. Herein, a multiscale strategy is proposed to synthesize hierarchical nanofibers covered by carbon nanotubes and embedded with cobalt nanoparticles (Co/CNT/HCNF). The confinement effect of carbon nanotubes can restrict the diameter of the cobalt particles down to several nanometers and prevent the easy corrosion of these nanoparticles. The three-dimensional carbon nanofibers, in size range of several hundred nanometers, improve the electrochemically active surface area, facilitate electron transfer, and accelerate CO2 transportation. These cross-linked carbon nanofibers eventually form a freestanding Co/CNT/HCNF membrane of dozens of square centimeters. Consequently, Co/CNT/HCNF produces CO with 97% faradaic efficiency at only -0.4 VRHE cathode potential in an H-type cell. From the regulation of catalyst nanostructure to the design of macrography devices, Co/CNT/HCNF membrane can be directly used as the gas-diffusion compartment in a flow cell device. Co/CNT/HCNF membrane generates CO with faradaic efficiencies higher than 90% and partial current densities greater than 300 mA cm-2 for at least 100-h stability. This strategy provides a successful example of efficient catalysts for CO2 electroreduction and also has the feasibility in other self-standing energy conversion devices.

9.
Opt Express ; 30(6): 9992-10010, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299412

RESUMO

Being a key component on a photonic chip, the microring usually specializes in a certain nonlinear optical process and can not simultaneously meet different working conditions for different processes. Here, we theoretically and experimentally investigate a reconfigurable silicon microring resonator to act as a optimization strategy for both classical four-wave mixing and quantum light sources. Experimental results show that the four-wave mixing efficiency with continuous wave and pulsed pump can be both optimized to a high value well matching numerical analysis. A variety of quantum light sources - including the heralded single-photon source, two-photon source and multi-photon source - are demonstrated to present a high performance and their key parameters including the pair generation rates (PGR), the heralding efficiency (HE) and the coincidence-to-accidental ratio (CAR) are controllable and optimizable. Such tunable nonlinear converter is immune to fabrication variations and can be popularized to other nonlinear optical materials, providing a simple and compact post-fabrication trimming strategy for on-chip all-optical signal processing and photonic quantum technologies.

10.
Inf Process Manag ; 58(4): 102554, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36570740

RESUMO

The dissemination of misinformation in health emergencies poses serious threats to public health and increases health anxiety. To understand the underlying mechanism of the dissemination of misinformation regarding health emergencies, this study creatively draws on social support theory and text mining. It also explores the roles of different types of misinformation, including health advice and caution misinformation and health help-seeking misinformation, and emotional support in affecting individuals' misinformation dissemination behavior on social media and whether such relationships are contingent on misinformation ambiguity and richness. The theoretical model is tested using 12,101 textual data about COVID-19 collected from Sina Weibo, a leading social media platform in China. The empirical results show that health caution and advice, help seeking misinformation, and emotional support significantly increase the dissemination of misinformation. Furthermore, when the level of ambiguity and richness regarding misinformation is high, the effect of health caution and advice misinformation is strengthened, whereas the effect of health help-seeking misinformation and emotional support is weakened, indicating both dark and bright misinformation ambiguity and richness. This study contributes to the literature on misinformation dissemination behavior on social media during health emergencies and social support theory and provides implications for practice.

11.
Opt Express ; 28(18): 26792-26806, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906947

RESUMO

Multipartite entanglement is one of the most prominent features of quantum mechanics and is the key ingredient in quantum information processing. Seeking for an advantageous way to generate it is of great value. Here we propose two different schemes to prepare multiphoton entangled states on a quantum photonic chip that are both based on the theory of entanglement on the graph. The first scheme is to construct graphs for multiphoton states by the network of spatially anti-bunching two-photon sources. The second one is to construct graphs by the linear beam-splitter network, which can generate W and Dicke states efficiently with simple structure. Both schemes can be scaled up in the photon number and can be reconfigured for different types of multiphoton states. This study supplies a systematic solution for the on-chip generation of multiphoton entangled states and will promote the practical development of multiphoton quantum technologies.

12.
Nanotechnology ; 31(45): 455709, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32707567

RESUMO

NiO is a promising electrocatalyst for electrochemical energy conversion due to its rich redox sites, low cost, and ease of synthesis. However, hindered by low electrical conductivity and limited electrocatalytic active sites, bare NiO usually exhibits poor electrochemical performance towards hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, we develop an N2 plasma activation approach to simultaneously improve both HER and OER activity of NiO by constructing heterostructured Ni/Ni3N/NiO nanosheet arrays on Ni foam. The optimized N2 plasma-activated NiO nanosheet arrays for HER and OER (denoted as P-NiO-HER and P-NiO-OER) only need an overpotential of 46 and 294 mV, respectively, to achieve 10 mA cm-2. Moreover, for overall water splitting, the assembled electrolysis cell with P-NiO-HER and P-NiO-OER as the cathode and anode, respectively, only requires a small voltage of 1.57 V to deliver 10 mA cm-2. Remarkably, the plasma-activated NiO nanosheet arrays exhibit excellent stability for up to 50 h for HER, OER, and full water electrolysis. The strategy developed here to activate the electrocatalytic performance of metal oxides opens a new door for water splitting.

13.
Angew Chem Int Ed Engl ; 58(23): 7744-7748, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-30957396

RESUMO

Metal sulfides with excellent redox reversibility and high capacity are very promising electrode materials for sodium-ion batteries. However, their practical application is still hindered by the poor rate capability and limited cycle life. Herein, a template-based strategy is developed to synthesize nitrogen-doped carbon-coated Cu9 S5 bullet-like hollow particles starting from bullet-like ZnO particles. With the structural and compositional advantages, these unique nitrogen-doped carbon-coated Cu9 S5 bullet-like hollow particles manifest excellent sodium storage properties with superior rate capability and ultra-stable cycling performance.

14.
Nanotechnology ; 29(21): 215601, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29485405

RESUMO

This work introduces the anion exchange method into the sol-gel process for the first time to prepare a metal sulfide aerogel. A porous Co9S8 aerogel with a high surface area (274.2 m2 g-1) and large pore volume (0.87 cm3 g-1) has been successfully prepared by exchanging cobalt citrate wet gel in thioacetamide and subsequently drying in supercritical ethanol. Such a Co9S8 aerogel shows enhanced supercapacitive performance and catalytic activity toward oxygen evolution reaction (OER) compared to its oxide aerogel counterpart. High specific capacitance (950 F g-1 at 1 A g-1), good rate capability (74.3% capacitance retention from 1 to 20 A g-1) and low onset overpotential for OER (220 mV) were observed. The results demonstrated here have implications in preparing various sulfide chalcogels.

15.
Angew Chem Int Ed Engl ; 57(31): 9859-9863, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29923279

RESUMO

Antimony-based electrode materials with high specific capacity have aroused considerable interest as anode materials for sodium-ion batteries (SIBs). Herein, we develop a template-engaged ion-exchange method to synthesize Sb2 Se3 microclips, and the as-obtained Sb2 Se3 microclips are further in situ coated with polypyrrole (PPy). Benefiting from the structural and compositional merits, these PPy-coated Sb2 Se3 microclips exhibit enhanced sodium-storage properties in terms of high reversible capacity, superior rate capability, and stable cycling performance.

16.
Angew Chem Int Ed Engl ; 56(14): 3897-3900, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28244625

RESUMO

Hollow nanostructures have attracted increasing research interest in electrochemical energy storage and conversion owing to their unique structural features. However, the synthesis of hollow nanostructured metal phosphides, especially nonspherical hollow nanostructures, is rarely reported. Herein, we develop a metal-organic framework (MOF)-based strategy to synthesize carbon incorporated Ni-Co mixed metal phosphide nanoboxes (denoted as NiCoP/C). The oxygen evolution reaction (OER) is selected as a demonstration to investigate the electrochemical performance of the NiCoP/C nanoboxes. For comparison, Ni-Co layered double hydroxide (Ni-Co LDH) and Ni-Co mixed metal phosphide (denoted as NiCoP) nanoboxes have also been synthesized. Benefiting from their structural and compositional merits, the as-synthesized NiCoP/C nanoboxes exhibit excellent electrocatalytic activity and long-term stability for OER.

17.
Angew Chem Int Ed Engl ; 56(21): 5801-5805, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28436081

RESUMO

Layered metal oxides have attracted increasing attention as cathode materials for sodium-ion batteries (SIBs). However, the application of such cathode materials is still hindered by their poor rate capability and cycling stability. Here, a facile self-templated strategy is developed to synthesize uniform P2-Na0.7 CoO2 microspheres. Due to the unique microsphere structure, the contact area of the active material with electrolyte is minimized. As expected, the P2-Na0.7 CoO2 microspheres exhibit enhanced electrochemical performance for sodium storage in terms of high reversible capacity (125 mAh g-1 at 5 mA g-1 ), superior rate capability and long cycle life (86 % capacity retention over 300 cycles). Importantly, the synthesis method can be easily extended to synthesize other layered metal oxide (P2-Na0.7 MnO2 and O3-NaFeO2 ) microspheres.

18.
Angew Chem Int Ed Engl ; 56(40): 12202-12205, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28753254

RESUMO

Tin(II) sulfide (SnS) has been an attractive anode material for sodium ion batteries. Herein, an elegant templating method has been developed for the rational design and synthesis of hierarchical SnS nanotubes composed of ultrathin nanosheets. In order to enhance the electrochemical performance, carbon coated hierarchical SnS nanotubes (denoted as SnS@C nanotubes) have also been obtained by simply adding glucose into the reaction system. Benefiting from their unique structural merits, the SnS@C nanotubes exhibit enhanced sodium storage properties in terms of good cycling performance and superior rate capability.

19.
Angew Chem Int Ed Engl ; 54(25): 7395-8, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25939884

RESUMO

Molybdenum disulfide (MoS2) has received considerable interest for electrochemical energy storage and conversion. In this work, we have designed and synthesized a unique hybrid hollow structure by growing ultrathin MoS2 nanosheets on N-doped carbon shells (denoted as C@MoS2 nanoboxes). The N-doped carbon shells can greatly improve the conductivity of the hybrid structure and effectively prevent the aggregation of MoS2 nanosheets. The ultrathin MoS2 nanosheets could provide more active sites for electrochemical reactions. When evaluated as an anode material for lithium-ion batteries, these C@MoS2 nanoboxes show high specific capacity of around 1000 mAh g(-1), excellent cycling stability up to 200 cycles, and superior rate performance. Moreover, they also show enhanced electrocatalytic activity for the electrochemical hydrogen evolution.

20.
Angew Chem Int Ed Engl ; 54(6): 1868-72, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25522266

RESUMO

Despite the significant advancement in preparing metal oxide hollow structures, most approaches rely on template-based multistep procedures for tailoring the interior structure. In this work, we develop a new generally applicable strategy toward the synthesis of mixed-metal-oxide complex hollow spheres. Starting with metal glycerate solid spheres, we show that subsequent thermal annealing in air leads to the formation of complex hollow spheres of the resulting metal oxide. We demonstrate the concept by synthesizing highly uniform NiCo2O4 hollow spheres with a complex interior structure. With the small primary building nanoparticles, high structural integrity, complex interior architectures, and enlarged surface area, these unique NiCo2O4 hollow spheres exhibit superior electrochemical performances as advanced electrode materials for both lithium-ion batteries and supercapacitors. This approach can be an efficient self-templated strategy for the preparation of mixed-metal-oxide hollow spheres with complex interior structures and functionalities.


Assuntos
Cobalto/química , Fontes de Energia Elétrica , Lítio , Níquel/química , Óxidos/química , Técnicas Eletroquímicas , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA