Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biochem Biophys Res Commun ; 583: 162-168, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34739856

RESUMO

Glucagon-like peptide-1 (GLP-1) is a major incretin hormone that enhances the release of insulin from pancreatic ß-cells by activating the glucagon-like peptide-1 receptor (GLP1R), which belongs to secretin-like class B of G protein-coupled receptors (GPCRs). Owing to the absence of small molecule agonist drugs to GLP1R, focus has been placed on chemical modulators that bind to the allosteric site of GLP1R. In this study, we identified novel small-molecule positive allosteric modulators of GLP1R from a chemical library consisting of commercial drug compounds using an assay system that measures the direct interaction between a purified GLP1R and its ligand, exendin-4. Two newly identified compounds, benzethonium and tamoxifen, significantly enhanced the affinity of peptide ligands for GLP1R although they lacked agonist activity by themselves. In addition, benzethonium augmented the ligand-induced accumulation of cAMP in GLP1R-transfected HEK293T cells. These compounds significantly increased the affinity of GLP1R to the alpha-subunit of G proteins, suggesting that they stabilize GLP1R in a conformation with a higher affinity to peptide ligand as well as G proteins. These compounds may lead to the design of an orally active positive allosteric modulator for GLP1R.

2.
Proc Natl Acad Sci U S A ; 113(18): E2480-8, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27099293

RESUMO

DNA-binding repressors are involved in transcriptional repression in many organisms. Disabling a repressor is a crucial step in activating expression of desired genes. Thus, several mechanisms have been identified for the removal of a stably bound repressor (Rep) from the operator. Here, we describe an uncharacterized mechanism of noncanonical DNA binding and induction by a Rep from the temperate Salmonella phage SPC32H; this mechanism was revealed using the crystal structures of homotetrameric Rep (92-198) and a hetero-octameric complex between the Rep and its antirepressor (Ant). The canonical method of inactivating a repressor is through the competitive binding of the antirepressor to the operator-binding site of the repressor; however, these studies revealed several noncanonical features. First, Ant does not compete for the DNA-binding region of Rep. Instead, the tetrameric Ant binds to the C-terminal domains of two asymmetric Rep dimers. Simultaneously, Ant facilitates the binding of the Rep N-terminal domains to Ant, resulting in the release of two Rep dimers from the bound DNA. Second, the dimer pairs of the N-terminal DNA-binding domains originate from different dimers of a Rep tetramer (trans model). This situation is different from that of other canonical Reps, in which two N-terminal DNA-binding domains from the same dimeric unit form a dimer upon DNA binding (cis model). On the basis of these observations, we propose a noncanonical model for the reversible inactivation of a Rep by an Ant.


Assuntos
DNA Viral/química , Modelos Químicos , Modelos Moleculares , Proteínas Repressoras/química , Proteínas Repressoras/ultraestrutura , Bacteriófagos/química , Bacteriófagos/genética , Sítios de Ligação , Simulação por Computador , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica
4.
Proc Natl Acad Sci U S A ; 112(40): 12372-7, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392564

RESUMO

Intercellular bridges are a conserved feature of spermatogenesis in mammalian germ cells and derive from arresting cell abscission at the final stage of cytokinesis. However, it remains to be fully understood how germ cell abscission is arrested in the presence of general cytokinesis components. The TEX14 (testis-expressed gene 14) protein is recruited to the midbody and plays a key role in the inactivation of germ cell abscission. To gain insights into the structural organization of TEX14 at the midbody, we have determined the crystal structures of the EABR [endosomal sorting complex required for transport (ESCRT) and ALIX-binding region] of CEP55 bound to the TEX14 peptide (or its chimeric peptides) and performed functional characterization of the CEP55-TEX14 interaction by multiexperiment analyses. We show that TEX14 interacts with CEP55-EABR via its AxGPPx3Y (Ala793, Gly795, Pro796, Pro797, and Tyr801) and PP (Pro803 and Pro804) sequences, which together form the AxGPPx3YxPP motif. TEX14 competitively binds to CEP55-EABR to prevent the recruitment of ALIX, which is a component of the ESCRT machinery with the AxGPPx3Y motif. We also demonstrate that a high affinity and a low dissociation rate of TEX14 to CEP55, and an increase in the local concentration of TEX14, cooperatively prevent ALIX from recruiting ESCRT complexes to the midbody. The action mechanism of TEX14 suggests a scheme of how to inactivate the abscission of abnormal cells, including cancer cells.


Assuntos
Células Germinativas/metabolismo , Testículo/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Expressão Gênica , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermatogênese/genética , Testículo/citologia , Fatores de Transcrição/genética
5.
Int J Mol Sci ; 19(2)2018 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-29382046

RESUMO

Intrinsically disordered proteins (IDPs) represent approximately 30% of the human genome and play key roles in cell proliferation and cellular signaling by modulating the function of target proteins via protein-protein interactions. In addition, IDPs are involved in various human disorders, such as cancer, neurodegenerative diseases, and amyloidosis. To understand the underlying molecular mechanism of IDPs, it is important to study their structural features during their interactions with target proteins. However, conventional biochemical and biophysical methods for analyzing proteins, such as X-ray crystallography, have difficulty in characterizing the features of IDPs because they lack an ordered three-dimensional structure. Here, we present biochemical and biophysical studies on nucleolar phosphoprotein 140 (Nopp140), which mostly consists of disordered regions, during its interaction with casein kinase 2 (CK2), which plays a central role in cell growth. Surface plasmon resonance and electron paramagnetic resonance studies were performed to characterize the interaction between Nopp140 and CK2. A single-molecule fluorescence resonance energy transfer study revealed conformational change in Nopp140 during its interaction with CK2. These studies on Nopp140 can provide a good model system for understanding the molecular function of IDPs.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Proteínas Nucleares/química , Fosfoproteínas/química , Animais , Caseína Quinase II/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica
6.
Biochem Biophys Res Commun ; 487(1): 103-108, 2017 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-28392399

RESUMO

Human lysophosphatidic acid receptor 2 (LPA2), a member of the G-protein coupled receptor family, mediates lysophosphatidic acid (LPA)-dependent signaling by recruiting various G proteins. Particularly, it is directly implicated in the progression of colorectal and ovarian cancer through G protein signaling cascades. To investigate the biochemical binding properties of LPA2 against various alpha subunits of G protein (Gα), a functional recombinant LPA2 was overexpressed in E. coli membrane with a P9∗ expression system, and the purified protein was stabilized with an amphipathic polymer that had been synthesized by coupling octylamine, glucosamine, and diethyl aminoproylamine at the carboxylic groups of poly-γ-glutamic acid. The purified LPA2 stabilized with the amphipathic polymer showed selective binding activity to the various Gα proteins as well as agonist-dependent dissociation from Gαi3. Understanding the binding properties of LPA2 against various Gα proteins advances the understanding of downstream signaling cascades of LPA2. The functional LPA2 prepared using a P9∗ expression system and an amphipathic polymer could also facilitate the development of LPA2-targeting drugs.


Assuntos
Escherichia coli/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/química , Vírus da Anemia Infecciosa Equina/genética , Receptores de Ácidos Lisofosfatídicos/química , Receptores de Ácidos Lisofosfatídicos/fisiologia , Sítios de Ligação , Clonagem Molecular/métodos , Escherichia coli/genética , Humanos , Ligação Proteica
7.
Biochem Biophys Res Commun ; 477(2): 181-7, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27297113

RESUMO

Nucleolar phosphoprotein 140 (Nopp140) is a nucleolar protein, more than 80% of which is disordered. Previous studies have shown that the C-terminal region of Nopp140 (residues 568-596) interacts with protein kinase CK2α, and inhibits the catalytic activity of CK2. Although the region of Nopp140 responsible for the interaction with CK2α was identified, the structural features and the effect of this interaction on the structure of Nopp140 have not been defined due to the difficulty of structural characterization of disordered protein. In this study, the disordered feature of Nopp140 and the effect of CK2α on the structure of Nopp140 were examined using single-molecule fluorescence resonance energy transfer (smFRET) and electron paramagnetic resonance (EPR). The interaction with CK2α was increased conformational rigidity of the CK2α-interacting region of Nopp140 (Nopp140C), suggesting that the disordered and flexible conformation of Nopp140C became more rigid conformation as it binds to CK2α. In addition, site specific spin labeling and EPR analysis confirmed that the residues 574-589 of Nopp140 are critical for binding to CK2α. Similar technical approaches can be applied to analyze the conformational changes in other IDPs during their interactions with binding partners.


Assuntos
Proteínas Nucleares/química , Proteínas Nucleares/ultraestrutura , Fosfoproteínas/química , Fosfoproteínas/ultraestrutura , Sítios de Ligação , Caseína Quinase II/química , Caseína Quinase II/ultraestrutura , Ativação Enzimática , Proteínas Intrinsicamente Desordenadas , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
8.
Extremophiles ; 20(5): 723-31, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27377296

RESUMO

Oligopeptide-binding proteins (Opps) are part of the ATP-binding cassette system, playing a crucial role in nutrient uptake and sensing the external environment in bacteria, including hyperthermophiles. Opps serve as a binding platform for diverse peptides; however, how these peptides are recognized by Opps is still largely unknown and few crystal structures of Opps from hyperthermophiles have been determined. To facilitate such an understanding, the crystal structure of a putative Opp, OppA from Thermotoga maritima (TmOppA), was solved at 2.6-Å resolution in the open conformation. TmOppA is composed of three domains. The N-terminal domain consists of twelve strands, nine helices, and four 310 helices, and the C-terminal domain consists of five strands, ten helices, and one 310 helix. These two domains are connected by the linker domain, which consists of two strands, three helices, and three 310 helices. Based on structural comparisons of TmOppA with other OppAs and binding studies, we suggest that TmOppA might be a periplasmic Opp. The most distinct feature of TmOppA is the insertion of two helices, which are lacking in other OppAs. A cavity volume between the N-terminal and C-terminal domains is suggested to be responsible for binding peptides of various lengths.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Lipoproteínas/química , Periplasma/metabolismo , Thermotoga maritima/química , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Ligação Proteica , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
9.
Proc Natl Acad Sci U S A ; 110(48): 19360-5, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218616

RESUMO

Protein kinase CK2 is a ubiquitous kinase that can phosphorylate hundreds of cellular proteins and plays important roles in cell growth and development. Deregulation of CK2 is related to a variety of human cancers, and CK2 is regarded as a suppressor of apoptosis; therefore, it is a target of anticancer therapy. Nucleolar phosphoprotein 140 (Nopp140), which is an intrinsically disordered protein, interacts with CK2 and inhibits the latter's catalytic activity in vitro. Interestingly, the catalytic activity of CK2 is recovered in the presence of d-myo-inositol 1,2,3,4,5,6-hexakisphosphate (IP6). IP6 is widely distributed in animal cells, but the molecular mechanisms that govern its cellular functions in animal cells have not been completely elucidated. In this study, the crystal structure of CK2 in complex with IP6 showed that the lysine-rich cluster of CK2 plays an important role in binding to IP6. The biochemical experiments revealed that a Nopp140 fragment (residues 568-596) and IP6 competitively bind to the catalytic subunit of CK2 (CK2α), and phospho-Ser574 of Nopp140 significantly enhances its interaction with CK2α. Substitutions of K74E, K76E, and K77E in CK2α significantly reduced the interactions of CK2α with both IP6 and the Nopp140-derived peptide. Our study gives an insight into the regulation of CK2. In particular, our work suggests that CK2 activity is inhibited by Nopp140 and reactivated by IP6 by competitive binding at the substrate recognition site of CK2.


Assuntos
Caseína Quinase II/química , Caseína Quinase II/metabolismo , Regulação da Expressão Gênica/fisiologia , Substâncias Macromoleculares/química , Modelos Moleculares , Proteínas Nucleares/química , Fosfoproteínas/química , Ácido Fítico/química , Substituição de Aminoácidos , Cristalização , Humanos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Ácido Fítico/metabolismo , Conformação Proteica , Difração de Raios X
10.
Biophys J ; 107(7): 1601-8, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25296312

RESUMO

In Alzheimer's disease, cytochrome c-dependent apoptosis is a crucial pathway in neuronal cell death. Although beta-amyloid (Aß) oligomers are known to be the neurotoxins responsible for neuronal cell death, the underlying mechanisms remain largely elusive. Here, we report that the oligomeric form of synthetic Aß of 42 amino acids elicits death of HT-22 cells. But, when expression of a bcl-2 family protein BAK is suppressed by siRNA, Aß oligomer-induced cell death was reduced. Furthermore, significant reduction of cytochrome c release was observed with mitochondria isolated from BAK siRNA-treated HT-22 cells. Our in vitro experiments demonstrate that Aß oligomers bind to BAK on the membrane and induce apoptotic BAK pores and cytochrome c release. Thus, the results suggest that Aß oligomers function as apoptotic ligands and hijack the intrinsic apoptotic pathway to cause unintended neuronal cell death.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/farmacologia , Apoptose/efeitos dos fármacos , Citocromos c/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Multimerização Proteica , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Linhagem Celular , Camundongos , Fragmentos de Peptídeos/metabolismo , Porosidade , Estrutura Secundária de Proteína , alfa-Sinucleína/farmacologia , Proteínas tau/farmacologia
11.
Protein Expr Purif ; 101: 146-51, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24993791

RESUMO

Rhoptry protein 6 (ROP6) from Toxoplasma gondii is a 480-amino acid protein with no homology to any reported excretory or secretory protein. Especially, unlike the many other rhoptry protein types, ROP6 does not have a kinase domain. The biochemical and biophysical properties of ROP6 are unknown. Here, we investigated its structure using an in silico analysis method and overexpression and purification using an Escherichia coli system. The protein was purified to more than 85% homogeneity using immobilized metal affinity chromatography in denaturing conditions. After purification, ROP6 showed slow migration in SDS-PAGE, including fast proteolysis. This implies that ROP6 has a high percentage of flexible regions or extended loop structures. Secondary structure prediction and prediction of intrinsically disordered regions by using various bioinformatics tools, indicated that approximately 60% of ROP6 is predicted to be intrinsically disordered or random coil regions. These observations indicate that ROP6 is an intrinsically disordered protein.


Assuntos
Proteínas Intrinsicamente Desordenadas/genética , Proteínas de Protozoários/genética , Toxoplasma/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Cromatografia de Afinidade , Clonagem Molecular , Biologia Computacional , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/biossíntese , Estrutura Secundária de Proteína , Proteínas de Protozoários/biossíntese
12.
Cell Rep ; 43(6): 114334, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38850532

RESUMO

Mechanically activating (MA) channels transduce numerous physiological functions. Tentonin 3/TMEM150C (TTN3) confers MA currents with slow inactivation kinetics in somato- and barosensory neurons. However, questions were raised about its role as a Piezo1 regulator and its potential as a channel pore. Here, we demonstrate that purified TTN3 proteins incorporated into the lipid bilayer displayed spontaneous and pressure-sensitive channel currents. These MA currents were conserved across vertebrates and differ from Piezo1 in activation threshold and pharmacological response. Deep neural network structure prediction programs coupled with mutagenetic analysis predicted a rectangular-shaped, tetrameric structure with six transmembrane helices and a pore at the inter-subunit center. The putative pore aligned with two helices of each subunit and had constriction sites whose mutations changed the MA currents. These findings suggest that TTN3 is a pore-forming subunit of a distinct slow inactivation MA channel, potentially possessing a tetrameric structure.


Assuntos
Canais Iônicos , Humanos , Canais Iônicos/metabolismo , Canais Iônicos/química , Animais , Subunidades Proteicas/metabolismo , Células HEK293 , Mecanotransdução Celular , Camundongos , Mutação , Sequência de Aminoácidos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Bicamadas Lipídicas/metabolismo
13.
Protein Expr Purif ; 88(2): 190-5, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23321066

RESUMO

Human serotonin receptor 3A (5-HT3A) is a ligand-gated ion channel regulated by serotonin. A fusion protein (P9-5-HT3A) of 5-HT3A with the P9 protein, a major envelope protein of bacteriophage phi6, was highly expressed in the membrane fraction of Escherichia coli, and the expressed protein was purified to homogeneity using an affinity chromatography. P9-5-HT3A was observed as mixed oligomers in detergents. The purified P9-5-HT3A was efficiently reconstituted into proteoliposomes, and the serotonin-dependent ion-channel activity of P9-5-HT3A was observed by measuring the increased fluorescence of Fluo-3 attributed to the formation of a complex with the Ca(2+) ions released from the proteoliposomes. Alanine substitution for Trp178 of 5-HT3A abolished the serotonin-dependent ion-channel activity, confirming the importance of Trp178 as a ligand-binding site. Furthermore, the ion-channel activity of the reconstituted P9-5-HT3A was effectively blocked by treatment with ondansetron, an antagonist of 5-HT3A. The bacterial expression system of human 5-HT3A and the proteoliposomes reconstituted with 5-HT3A would provide biophysical and structural analyses of 5-HT3A.


Assuntos
Proteolipídeos/metabolismo , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Cálcio/metabolismo , Cromatografia de Afinidade , Escherichia coli/genética , Expressão Gênica , Humanos , Receptores 5-HT3 de Serotonina/isolamento & purificação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Serotonina/metabolismo , Regulação para Cima , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/isolamento & purificação , Proteínas da Matriz Viral/metabolismo
14.
Bioorg Med Chem Lett ; 23(1): 75-80, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23218602

RESUMO

Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase that catalyzes the conversion of prostaglandin PGH(2) to PGE(2) and represents a novel target for therapeutic treatment of inflammatory disorders. It is essential to identify mPGES-1 inhibitor with novel scaffold as new hit or lead compound for the purpose of the next-generation anti-inflammatory drugs. Herein we report the discovery of sulfonamido-1,2,3-triazole-4,5-dicarboxylic derivatives as a novel class of mPGES-1 inhibitors identified through fragment-based virtual screening and in vitro assays on the inhibitory activity of the actual compounds. 1-[2-(N-Phenylbenzenesulfonamido)ethyl]-1H-1,2,3-triazole-4,5-dicarboxylic acid (6f) inhibits human mPGES-1 (IC(50) of 1.1 µM) with high selectivity (ca.1000-fold) over both COX-1 and COX-2 in a cell-free assay. In addition, the activity of compound 6f was again tested at 10 µM concentration in presence of 0.1% Triton X-100 and found to be reduced to 1/4 of its original activity without this detergent. Compared to the complete loss of activity of nuisance inhibitor with the detergent, therefore, compound 6f would be regarded as a partial nuisance inhibitor of mPGES-1 with a novel scaffold for the optimal design of more potent mPGES-1 inhibitors.


Assuntos
Ácidos Dicarboxílicos/química , Inibidores Enzimáticos/química , Oxirredutases Intramoleculares/antagonistas & inibidores , Sulfonamidas/química , Triazóis/química , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Ácidos Dicarboxílicos/síntese química , Ácidos Dicarboxílicos/metabolismo , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Humanos , Oxirredutases Intramoleculares/metabolismo , Microssomos/enzimologia , Simulação de Acoplamento Molecular , Prostaglandina-E Sintases , Ligação Proteica , Sulfonamidas/síntese química , Sulfonamidas/metabolismo , Termodinâmica , Triazóis/síntese química , Triazóis/metabolismo
15.
Sensors (Basel) ; 13(5): 5686-99, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23645106

RESUMO

Phase contrast microscopy (PCM) is a widely used analytical method for airborne asbestos, but it is unable to distinguish asbestos from non-asbestos fibers and requires time-consuming and laborious manual counting of fibers. Previously, we developed a high-throughput microscopy (HTM) method that could greatly reduce human intervention and analysis time through automated image acquisition and counting of fibers. In this study, we designed a dual-mode HTM (DM-HTM) device for the combined reflection and fluorescence imaging of asbestos, and automated a series of built-in image processing commands of ImageJ software to test its capabilities. We used DksA, a chrysotile-adhesive protein, for selective detection of chrysotile fibers in the mixed dust-free suspension of crysotile and amosite prepared in the laboratory. We demonstrate that fluorescently-stained chrysotile and total fibers can be identified and enumerated automatically in a high-throughput manner by the DM-HTM system. Combined with more advanced software that can correctly identify overlapping and branching fibers and distinguish between fibers and elongated dust particles, the DM-HTM method should enable fully automated counting of airborne asbestos.

16.
Protein Sci ; 32(1): e4520, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36419382

RESUMO

G protein-coupled receptors (GPCRs) are in the spotlight as drug targets due to the fact that multiple research results have verified the correlation between the activation of GPCRs and disease indications. This is because the GPCRs are present across the cell membranes, which interact with either extracellular ligands or other types of compartments and simultaneously mediate intracellular signaling. Despite the importance of the GPCRs as drug targets, they are too difficult to express in soluble forms. Currently, the difficulty of preparing functional GPCRs and the lack of efficient antibody screening methods are the most challenging steps in the discovery of antibodies targeting GPCRs. In this study, we developed a powerful platform that facilitates isolating GPCR-specific antibodies by obviating difficulties in GPCR preparation. The strategies include (i) conjugation of the P9 peptide, an envelope protein of Pseudomonas phi6, to the N-terminus of GPCRs to improve the expression level of the GPCRs in Escherichia coli, (ii) stabilization of the GPCRs in their active forms with amphiphilic poly-γ-glutamate (APG) to shield the seven hydrophobic transmembrane domains, and (iii) further limiting the size of the APG complex to improve the chance to isolate antibodies targeting the proteins-of-interest. Capitalizing on the above strategies, we could prepare GPCR proteins in their active forms as facile as other general-soluble antigen proteins. Furthermore, this protocol was validated to be successful in discovering three individual GPCR-specific antibodies targeting glucagon-like peptide-1 receptor, C-X-C chemokine receptor type 4, and prostaglandin E2 receptor 4 in this study.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/metabolismo , Anticorpos/metabolismo
17.
Protein Expr Purif ; 84(1): 14-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22561246

RESUMO

Human endothelin receptor type A (ET(A)) is a G-protein coupled receptor that mediates vasoconstriction of blood vessels. To determine the structural characteristics and signaling mechanism of ET(A), we have expressed recombinant ET(A) as a fusion protein with p9 envelope protein from phi6 bacteriophage. The His-tag-labeled p9-ET(A) fusion protein was highly expressed in the membrane fraction of Escherichia coli and purified to homogeneity by single affinity chromatography after solubilization with detergents. Purified p9-ET(A) appeared as an oligomer and presented mainly as an α-helical structure. The protein also showed specific binding to endothelin-1 (ET-1) and the alpha subunit of G(q) protein with apparent K(D) values of 17 and 20 nM, respectively. An antagonist of ET(A), bosentan, prevented the interaction between p9-ET(A) and ET-1 in a concentration-dependent manner. These results indicate that recombinant p9-ET(A) has a competent conformation for interactions with ET-1 and the alpha subunit of G(q) protein.


Assuntos
Receptor de Endotelina A/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Membrana Celular/metabolismo , Cromatografia de Afinidade , Endotelina-1/metabolismo , Escherichia coli/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Histidina/química , Histidina/metabolismo , Humanos , Ligação Proteica , Conformação Proteica , Receptor de Endotelina A/química , Receptor de Endotelina A/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo
18.
Bioorg Med Chem Lett ; 22(24): 7335-9, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23147075

RESUMO

Human microsomal prostaglandin E synthase-1 (mPGES-1) is an emerging drug target for inflammatory disorders and cancer suppression. Therefore, it is crucially important to discover mPGES-1 inhibitors with novel structural scaffolds for the development of anti-inflammatory drugs. Here, we report the mPGES-1 inhibitors identified through screening of a chemical library. Initial screening of 1841 compounds out of 200,000 in a master library resulted in 9 primary hits. From the master library, 387 compounds that share the scaffold structure with the 9 primary hit compounds were selected, of which 3 compounds showed strong inhibitory activity against mPGES-1 having IC(50) values of 1-3 µM. Notably, a derivative of sulfonylhydrazide, compound 3b, inhibited the LPS-induced PGE(2) production in RAW 264.7 cells. This compound showed novel scaffold structure compared to the known inhibitors of mPGES-1, suggesting that it could be further developed as a potent mPGES-1 inhibitor.


Assuntos
Inibidores Enzimáticos/análise , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Oxirredutases Intramoleculares/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular , Dinoprostona/antagonistas & inibidores , Dinoprostona/biossíntese , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , Oxirredutases Intramoleculares/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Modelos Moleculares , Estrutura Molecular , Prostaglandina-E Sintases , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
19.
Antib Ther ; 5(3): 192-201, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35967907

RESUMO

Background: CC chemokine receptor 7 (CCR7) is a member of G-protein-coupled receptor family and mediates chemotactic migration of immune cells and different cancer cells induced via chemokine (C-C motif) ligand 19 (CCL19) or chemokine (C-C motif) ligand 21 (CCL21). Hence, the identification of blockade antibodies against CCR7 could lead to the development of therapeutics targeting metastatic cancer. Methods: CCR7 was purified and stabilized in its active conformation, and antibodies specific to purified CCR7 were screened from the synthetic M13 phage library displaying humanized scFvs. The in vitro characterization of selected scFvs identified two scFvs that exhibited CCL19-competitive binding to CCR7. IgG4's harboring selected scFv sequences were characterized for binding activity in CCR7+ cells, inhibitory activity toward CCR7-dependent cAMP attenuation, and the CCL19 or CCL21-dependent migration of CCR7+ cells. Results: Antibodies specifically binding to purified CCR7 and CCR7+ cells were isolated and characterized. Two antibodies, IgG4(6RG11) and IgG4(72C7), showed ligand-dependent competitive binding to CCR7 with KD values of 40 nM and 50 nM, respectively. Particularly, IgG4(6RG11) showed antagonistic activity against CCR7, whereas both antibodies significantly blocked the ligand-induced migration and invasion activity of CCR7+ cancer cells. Conclusions: Two antibody clones were successfully identified from a synthetic scFv-displaying phage library using purified recombinant CCR7 as an antigen. Antibodies specifically bound to the surface of CCR7+ cells and blocked CCR7+ cell migration. Particularly, 6RG11 showed antagonist activity against CCR7-dependent cAMP attenuation.

20.
Nat Commun ; 13(1): 1261, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273189

RESUMO

Owing to their excellent durability, tunable physical properties, and biofunctionality, block copolymer-based membranes provide a platform for various biotechnological applications. However, conventional approaches for fabricating block copolymer membranes produce only planar or suspended polymersome structures, which limits their utilization. This study is the first to demonstrate that an electric-field-assisted self-assembly technique can allow controllable and scalable fabrication of 3-dimensional block copolymer artificial cell membranes (3DBCPMs) immobilized on predefined locations. Topographically and chemically structured microwell array templates facilitate uniform patterning of block copolymers and serve as reactors for the effective growth of 3DBCPMs. Modulating the concentration of the block copolymer and the amplitude/frequency of the electric field generates 3DBCPMs with diverse shapes, controlled sizes, and high stability (100% survival over 50 days). In vitro protein-membrane assays and mimicking of human intestinal organs highlight the potential of 3DBCPMs for a variety of biological applications such as artificial cells, cell-mimetic biosensors, and bioreactors.


Assuntos
Células Artificiais , Técnicas Biossensoriais , Humanos , Membranas Artificiais , Polímeros/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA