Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Mol Cell ; 83(4): 637-651.e9, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36764303

RESUMO

Nonsense mutations create premature termination codons (PTCs), activating the nonsense-mediated mRNA decay (NMD) pathway to degrade most PTC-containing mRNAs. The undegraded mRNA is translated, but translation terminates at the PTC, leading to no production of the full-length protein. This work presents targeted PTC pseudouridylation, an approach for nonsense suppression in human cells. Specifically, an artificial box H/ACA guide RNA designed to target the mRNA PTC can suppress both NMD and premature translation termination in various sequence contexts. Targeted pseudouridylation exhibits a level of suppression comparable with that of aminoglycoside antibiotic treatments. When targeted pseudouridylation is combined with antibiotic treatment, a much higher level of suppression is observed. Transfection of a disease model cell line (carrying a chromosomal PTC) with a designer guide RNA gene targeting the PTC also leads to nonsense suppression. Thus, targeted pseudouridylation is an RNA-directed gene-specific approach that suppresses NMD and concurrently promotes PTC readthrough.


Assuntos
Códon sem Sentido , Biossíntese de Proteínas , Humanos , Códon sem Sentido/genética , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Nat Rev Mol Cell Biol ; 16(10): 581-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26285676

RESUMO

Pseudouridylation is the most abundant internal post-transcriptional modification of stable RNAs, with fundamental roles in the biogenesis and function of spliceosomal small nuclear RNAs (snRNAs) and ribosomal RNAs (rRNAs). Recently, the first transcriptome-wide maps of RNA pseudouridylation were published, greatly expanding the catalogue of known pseudouridylated RNAs. These data have further implicated RNA pseudouridylation in the cellular stress response and, moreover, have established that mRNAs are also targets of pseudouridine synthases, potentially representing a novel mechanism for expanding the complexity of the cellular proteome.


Assuntos
Pseudouridina/metabolismo , RNA Ribossômico/metabolismo , RNA Nuclear Pequeno/metabolismo , Transcriptoma/fisiologia , Animais , Humanos
3.
Biochem J ; 481(1): 1-16, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38174858

RESUMO

RNA-guided pseudouridylation, a widespread post-transcriptional RNA modification, has recently gained recognition for its role in cellular processes such as pre-mRNA splicing and the modulation of premature termination codon (PTC) readthrough. This review provides insights into its mechanisms, functions, and potential therapeutic applications. It examines the mechanisms governing RNA-guided pseudouridylation, emphasizing the roles of guide RNAs and pseudouridine synthases in catalyzing uridine-to-pseudouridine conversion. A key focus is the impact of RNA-guided pseudouridylation of U2 small nuclear RNA on pre-mRNA splicing, encompassing its influence on branch site recognition and spliceosome assembly. Additionally, the review discusses the emerging role of RNA-guided pseudouridylation in regulating PTC readthrough, impacting translation termination and genetic disorders. Finally, it explores the therapeutic potential of pseudouridine modifications, offering insights into potential treatments for genetic diseases and cancer and the development of mRNA vaccine.


Assuntos
Pseudouridina , Precursores de RNA , Pseudouridina/genética , Pseudouridina/metabolismo , Precursores de RNA/metabolismo , RNA Guia de Sistemas CRISPR-Cas , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Biossíntese de Proteínas
4.
Genes Dev ; 30(21): 2376-2390, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881600

RESUMO

In cytoplasm, the survival of motor neuron (SMN) complex delivers pre-small nuclear RNAs (pre-snRNAs) to the heptameric Sm ring for the assembly of the ring complex on pre-snRNAs at the conserved Sm site [A(U)4-6G]. Gemin5, a WD40 protein component of the SMN complex, is responsible for recognizing pre-snRNAs. In addition, Gemin5 has been reported to specifically bind to the m7G cap. In this study, we show that the WD40 domain of Gemin5 is both necessary and sufficient for binding the Sm site of pre-snRNAs by isothermal titration calorimetry (ITC) and mutagenesis assays. We further determined the crystal structures of the WD40 domain of Gemin5 in complex with the Sm site or m7G cap of pre-snRNA, which reveal that the WD40 domain of Gemin5 recognizes the Sm site and m7G cap of pre-snRNAs via two distinct binding sites by respective base-specific interactions. In addition, we also uncovered a novel role of Gemin5 in escorting the truncated forms of U1 pre-snRNAs for proper disposal. Overall, the elucidated Gemin5 structures will contribute to a better understanding of Gemin5 in small nuclear ribonucleic protein (snRNP) biogenesis as well as, potentially, other cellular activities.


Assuntos
Modelos Moleculares , Precursores de RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/química , Proteínas do Complexo SMN/metabolismo , Sítios de Ligação , Linhagem Celular , Cristalização , Células HEK293 , Humanos , Mutação Puntual , Ligação Proteica , Domínios Proteicos/genética , Estrutura Terciária de Proteína , Transporte Proteico , Precursores de RNA/química , Ribonucleoproteínas Nucleares Pequenas/biossíntese , Proteínas do Complexo SMN/genética
5.
RNA ; 26(9): 1247-1256, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32434780

RESUMO

We have previously shown that when the uridine of a stop codon (UAA, UAG, or UGA) is pseudouridylated, the ribosome reads through the modified stop codon. However, it is not clear as to whether or not the pseudouridine (Ψ)-mediated readthrough is dependent on the sequence context of mRNA. Here, we use several different approaches and the yeast system to address this question. We show that when a stop codon (premature termination codon, PTC) is introduced into the coding region of a reporter mRNA at several different positions (with different sequence contexts) and pseudouridylated, we detect similar levels of readthrough. Using mutational and selection/screen analyses, we also show that the upstream sequence (relative to PTC) as well as the nucleotides surrounding the PTC (upstream and downstream) play a minimal role (if at all) in Ψ-mediated ribosome readthrough. Interestingly, we detect no suppression of NMD (nonsense-mediated mRNA decay) by targeted PTC pseudouridylation in the yeast system. Our results indicate that Ψ-mediated nonsense suppression occurs at the translational level, and that the suppression is sequence context-independent, unlike some previously characterized rare stop codon readthrough events.


Assuntos
Códon sem Sentido/genética , Códon de Terminação/genética , Pseudouridina/genética , Saccharomyces cerevisiae/genética , Mutação/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Nucleotídeos/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Ribossomos/genética
6.
EMBO J ; 35(6): 654-67, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26873591

RESUMO

Pseudouridine (Ψ) is the most abundant internal modification identified in RNA, and yet little is understood of its effects on downstream reactions. Yeast U2 snRNA contains three conserved Ψs (Ψ35, Ψ42, and Ψ44) in the branch site recognition region (BSRR), which base pairs with the pre-mRNA branch site during splicing. Here, we show that blocks to pseudouridylation at these positions reduce the efficiency of pre-mRNA splicing, leading to growth-deficient phenotypes. Restoration of pseudouridylation at these positions using designer snoRNAs results in near complete rescue of splicing and cell growth. These Ψs interact genetically with Prp5, an RNA-dependent ATPase involved in monitoring the U2 BSRR-branch site base-pairing interaction. Biochemical analysis indicates that Prp5 has reduced affinity for U2 snRNA that lacks Ψ42 and Ψ44 and that Prp5 ATPase activity is reduced when stimulated by U2 lacking Ψ42 or Ψ44 relative to wild type, resulting in inefficient spliceosome assembly. Furthermore, in vivo DMS probing analysis reveals that pseudouridylated U2, compared to U2 lacking Ψ42 and Ψ44, adopts a slightly different structure in the branch site recognition region. Taken together, our results indicate that the Ψs in U2 snRNA contribute to pre-mRNA splicing by directly altering the binding/ATPase activity of Prp5.


Assuntos
RNA Helicases DEAD-box/metabolismo , Pseudouridina/metabolismo , Splicing de RNA , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Conformação de Ácido Nucleico , Saccharomyces cerevisiae/enzimologia
7.
RNA ; 24(8): 1106-1117, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29871894

RESUMO

Box H/ACA RNAs are a group of small RNAs found in abundance in eukaryotes (as well as in archaea). Although their sequences differ, eukaryotic box H/ACA RNAs all share the same unique hairpin-hinge-hairpin-tail structure. Almost all of them function as guides that primarily direct pseudouridylation of rRNAs and spliceosomal snRNAs at specific sites. Although box H/ACA RNA-guided pseudouridylation has been extensively studied, the detailed rules governing this reaction, especially those concerning the guide RNA-substrate RNA base-pairing interactions that determine the specificity and efficiency of pseudouridylation, are still not exactly clear. This is particularly relevant given that the lengths of the guide sequences involved in base-pairing vary from one box H/ACA RNA to another. Here, we carry out a detailed investigation into guide-substrate base-pairing interactions, and identify the minimum number of base pairs (8), required for RNA-guided pseudouridylation. In addition, we find that the pseudouridylation pocket, present in each hairpin of box H/ACA RNA, exhibits flexibility in fitting slightly different substrate sequences. Our results are consistent across three independent pseudouridylation pockets tested, suggesting that our findings are generally applicable to box H/ACA RNA-guided RNA pseudouridylation.


Assuntos
Pareamento de Bases/genética , Conformação de Ácido Nucleico , Pseudouridina/química , RNA Guia de Cinetoplastídeos/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , Sítios de Ligação/genética , Spliceossomos/genética
8.
Int J Mol Sci ; 21(12)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575694

RESUMO

Nonsense mutations often result from single nucleotide substitutions that change a sense codon (coding for an amino acid) to a nonsense or premature termination codon (PTC) within the coding region of a gene. The impact of nonsense mutations is two-fold: (1) the PTC-containing mRNA is degraded by a surveillance pathway called nonsense-mediated mRNA decay (NMD) and (2) protein translation stops prematurely at the PTC codon, and thus no functional full-length protein is produced. As such, nonsense mutations result in a large number of human diseases. Nonsense suppression is a strategy that aims to correct the defects of hundreds of genetic disorders and reverse disease phenotypes and conditions. While most clinical trials have been performed with small molecules, there is an increasing need for sequence-specific repair approaches that are safer and adaptable to personalized medicine. Here, we discuss recent advances in both conventional strategies as well as new technologies. Several of these will soon be tested in clinical trials as nonsense therapies, even if they still have some limitations and challenges to overcome.


Assuntos
Códon sem Sentido , RNA Mensageiro/química , Bibliotecas de Moléculas Pequenas/uso terapêutico , Ensaios Clínicos como Assunto , Códon sem Sentido/efeitos dos fármacos , Predisposição Genética para Doença , Humanos , Degradação do RNAm Mediada por Códon sem Sentido/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Medicina de Precisão , RNA Mensageiro/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
9.
Nature ; 500(7460): 107-10, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23812587

RESUMO

During normal translation, the binding of a release factor to one of the three stop codons (UGA, UAA or UAG) results in the termination of protein synthesis. However, modification of the initial uridine to a pseudouridine (Ψ) allows efficient recognition and read-through of these stop codons by a transfer RNA (tRNA), although it requires the formation of two normally forbidden purine-purine base pairs. Here we determined the crystal structure at 3.1 Å resolution of the 30S ribosomal subunit in complex with the anticodon stem loop of tRNA(Ser) bound to the ΨAG stop codon in the A site. The ΨA base pair at the first position is accompanied by the formation of purine-purine base pairs at the second and third positions of the codon, which show an unusual Watson-Crick/Hoogsteen geometry. The structure shows a previously unsuspected ability of the ribosomal decoding centre to accommodate non-canonical base pairs.


Assuntos
Pareamento de Bases , Códon de Terminação/genética , Códon de Terminação/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Anticódon/química , Anticódon/genética , Anticódon/metabolismo , Sequência de Bases , Códon de Terminação/química , Cristalografia por Raios X , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Pseudouridina/química , Pseudouridina/genética , Pseudouridina/metabolismo , RNA de Transferência de Serina/química , RNA de Transferência de Serina/genética , RNA de Transferência de Serina/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Ribossomos/genética
10.
RNA ; 22(8): 1146-52, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27268497

RESUMO

Pseudouridine (Ψ) has been identified in various types of RNAs, including mRNA, rRNA, tRNA, snRNA, and many other noncoding RNAs. We have previously shown that RNA pseudouridylation, like DNA and protein modifications, can be induced by stress. For instance, growing yeast cells to saturation induces the formation of Ψ93 in U2 snRNA. Here, we further investigate this inducible RNA modification. We show that switching yeast cells from nutrient-rich medium to different nutrient-deprived media (including water) results in the formation of Ψ93 in U2 snRNA. Using gene deletion/conditional depletion as well as rapamycin treatment, we further show that the TOR signaling pathway, which controls cell entry into stationary phase, regulates Ψ93 formation. The RAS/cAMP signaling pathway, which parallels the TOR pathway, plays no role in this inducible modification.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Uridina/metabolismo , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA