RESUMO
To understand the molecular mechanisms of cellular pathways, contemporary workflows typically require multiple techniques to identify proteins, track their localization, and determine their structures in vitro. Here, we combined cellular cryoelectron tomography (cryo-ET) and AlphaFold2 modeling to address these questions and understand how mammalian sperm are built in situ. Our cellular cryo-ET and subtomogram averaging provided 6.0-Å reconstructions of axonemal microtubule structures. The well-resolved tertiary structures allowed us to unbiasedly match sperm-specific densities with 21,615 AlphaFold2-predicted protein models of the mouse proteome. We identified Tektin 5, CCDC105, and SPACA9 as novel microtubule-associated proteins. These proteins form an extensive interaction network crosslinking the lumen of axonemal doublet microtubules, suggesting their roles in modulating the mechanical properties of the filaments. Indeed, Tekt5 -/- sperm possess more deformed flagella with 180° bends. Together, our studies presented a cellular visual proteomics workflow and shed light on the in vivo functions of Tektin 5.
Assuntos
Proteoma , Espermatozoides , Animais , Masculino , Camundongos , Axonema/química , Microscopia Crioeletrônica/métodos , Flagelos/metabolismo , Microtúbulos/metabolismo , Sêmen , Espermatozoides/química , Proteoma/análiseRESUMO
mTORC1 controls anabolic and catabolic processes in response to nutrients through the Rag GTPase heterodimer, which is regulated by multiple upstream protein complexes. One such regulator, FLCN-FNIP2, is a GTPase activating protein (GAP) for RagC/D, but despite its important role, how it activates the Rag GTPase heterodimer remains unknown. We used cryo-EM to determine the structure of FLCN-FNIP2 in a complex with the Rag GTPases and Ragulator. FLCN-FNIP2 adopts an extended conformation with two pairs of heterodimerized domains. The Longin domains heterodimerize and contact both nucleotide binding domains of the Rag heterodimer, while the DENN domains interact at the distal end of the structure. Biochemical analyses reveal a conserved arginine on FLCN as the catalytic arginine finger and lead us to interpret our structure as an on-pathway intermediate. These data reveal features of a GAP-GTPase interaction and the structure of a critical component of the nutrient-sensing mTORC1 pathway.
Assuntos
Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Proteínas Monoméricas de Ligação ao GTP/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Proteínas Proto-Oncogênicas/ultraestrutura , Proteínas Supressoras de Tumor/ultraestrutura , Arginina/metabolismo , Biocatálise , Proteínas de Transporte/química , Proteínas Ativadoras de GTPase/metabolismo , Células HEK293 , Humanos , Hidrólise , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/química , Complexos Multiproteicos/química , Conformação Proteica , Multimerização Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Supressoras de Tumor/químicaRESUMO
mTORC1 controls cellular metabolic processes in response to nutrient availability. Amino acid signals are transmitted to mTORC1 through the Rag GTPases, which are localized on the lysosomal surface by the Ragulator complex. The Rag GTPases receive amino acid signals from multiple upstream regulators. One negative regulator, GATOR1, is a GTPase activating protein (GAP) for RagA. GATOR1 binds to the Rag GTPases via two modes: an inhibitory mode and a GAP mode. How these two binding interactions coordinate to process amino acid signals is unknown. Here, we resolved three cryo-EM structural models of the GATOR1-Rag-Ragulator complex, with the Rag-Ragulator subcomplex occupying the inhibitory site, the GAP site, and both binding sites simultaneously. When the Rag GTPases bind to GATOR1 at the GAP site, both Rag subunits contact GATOR1 to coordinate their nucleotide loading states. These results reveal a potential GAP mechanism of GATOR1 during the mTORC1 inactivation process.
Assuntos
Proteínas Ativadoras de GTPase , Proteínas Monoméricas de Ligação ao GTP , Aminoácidos/metabolismo , Microscopia Crioeletrônica , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismoRESUMO
The androgen receptor (AR) is a nuclear receptor that governs gene expression programs required for prostate development and male phenotype maintenance. Advanced prostate cancers display AR hyperactivation and transcriptome expansion, in part, through AR amplification and interaction with oncoprotein cofactors. Despite its biological importance, how AR domains and cofactors cooperate to bind DNA has remained elusive. Using single-particle cryo-electron microscopy, we isolated three conformations of AR bound to DNA, showing that AR forms a non-obligate dimer, with the buried dimer interface utilized by ancestral steroid receptors repurposed to facilitate cooperative DNA binding. We identify novel allosteric surfaces which are compromised in androgen insensitivity syndrome and reinforced by AR's oncoprotein cofactor, ERG, and by DNA-binding motifs. Finally, we present evidence that this plastic dimer interface may have been adopted for transactivation at the expense of DNA binding. Our work highlights how fine-tuning AR's cooperative interactions translate to consequences in development and disease.
Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Microscopia Crioeletrônica , DNA/metabolismo , Dimerização , Humanos , Masculino , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Ativação TranscricionalRESUMO
RNA-guided systems, such as CRISPR-Cas, combine programmable substrate recognition with enzymatic function, a combination that has been used advantageously to develop powerful molecular technologies1,2. Structural studies of these systems have illuminated how the RNA and protein jointly recognize and cleave their substrates, guiding rational engineering for further technology development3. Recent work identified a new class of RNA-guided systems, termed OMEGA, which include IscB, the likely ancestor of Cas9, and the nickase IsrB, a homologue of IscB lacking the HNH nuclease domain4. IsrB consists of only around 350 amino acids, but its small size is counterbalanced by a relatively large RNA guide (roughly 300-nt ωRNA). Here, we report the cryogenic-electron microscopy structure of Desulfovirgula thermocuniculi IsrB (DtIsrB) in complex with its cognate ωRNA and a target DNA. We find the overall structure of the IsrB protein shares a common scaffold with Cas9. In contrast to Cas9, however, which uses a recognition (REC) lobe to facilitate target selection, IsrB relies on its ωRNA, part of which forms an intricate ternary structure positioned analogously to REC. Structural analyses of IsrB and its ωRNA as well as comparisons to other RNA-guided systems highlight the functional interplay between protein and RNA, advancing our understanding of the biology and evolution of these diverse systems.
Assuntos
DNA , Desoxirribonuclease I , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/ultraestrutura , DNA/química , DNA/metabolismo , DNA/ultraestrutura , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/metabolismo , RNA Guia de Cinetoplastídeos/ultraestrutura , Microscopia Crioeletrônica , Proteínas Associadas a CRISPR/químicaRESUMO
The human GABAB receptor-a member of the class C family of G-protein-coupled receptors (GPCRs)-mediates inhibitory neurotransmission and has been implicated in epilepsy, pain and addiction1. A unique GPCR that is known to require heterodimerization for function2-6, the GABAB receptor has two subunits, GABAB1 and GABAB2, that are structurally homologous but perform distinct and complementary functions. GABAB1 recognizes orthosteric ligands7,8, while GABAB2 couples with G proteins9-14. Each subunit is characterized by an extracellular Venus flytrap (VFT) module, a descending peptide linker, a seven-helix transmembrane domain and a cytoplasmic tail15. Although the VFT heterodimer structure has been resolved16, the structure of the full-length receptor and its transmembrane signalling mechanism remain unknown. Here we present a near full-length structure of the GABAB receptor, captured in an inactive state by cryo-electron microscopy. Our structure reveals several ligands that preassociate with the receptor, including two large endogenous phospholipids that are embedded within the transmembrane domains to maintain receptor integrity and modulate receptor function. We also identify a previously unknown heterodimer interface between transmembrane helices 3 and 5 of both subunits, which serves as a signature of the inactive conformation. A unique 'intersubunit latch' within this transmembrane interface maintains the inactive state, and its disruption leads to constitutive receptor activity.
Assuntos
Microscopia Crioeletrônica , Receptores de GABA-B/química , Receptores de GABA-B/ultraestrutura , Cálcio/metabolismo , Etanolaminas/química , Etanolaminas/metabolismo , Humanos , Ligantes , Modelos Moleculares , Fosforilcolina/química , Fosforilcolina/metabolismo , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores de GABA-B/metabolismo , Relação Estrutura-AtividadeRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Plasmodium falciparum causes the severe form of malaria that has high levels of mortality in humans. Blood-stage merozoites of P. falciparum invade erythrocytes, and this requires interactions between multiple ligands from the parasite and receptors in hosts. These interactions include the binding of the Rh5-CyRPA-Ripr complex with the erythrocyte receptor basigin1,2, which is an essential step for entry into human erythrocytes. Here we show that the Rh5-CyRPA-Ripr complex binds the erythrocyte cell line JK-1 significantly better than does Rh5 alone, and that this binding occurs through the insertion of Rh5 and Ripr into host membranes as a complex with high molecular weight. We report a cryo-electron microscopy structure of the Rh5-CyRPA-Ripr complex at subnanometre resolution, which reveals the organization of this essential invasion complex and the mode of interactions between members of the complex, and shows that CyRPA is a critical mediator of complex assembly. Our structure identifies blades 4-6 of the ß-propeller of CyRPA as contact sites for Rh5 and Ripr. The limited contacts between Rh5-CyRPA and CyRPA-Ripr are consistent with the dissociation of Rh5 and Ripr from CyRPA for membrane insertion. A comparision of the crystal structure of Rh5-basigin with the cryo-electron microscopy structure of Rh5-CyRPA-Ripr suggests that Rh5 and Ripr are positioned parallel to the erythrocyte membrane before membrane insertion. This provides information on the function of this complex, and thereby provides insights into invasion by P. falciparum.
Assuntos
Antígenos de Protozoários/ultraestrutura , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Plasmodium falciparum , Proteínas de Protozoários/ultraestrutura , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Drosophila , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/parasitologia , Humanos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/patogenicidade , Plasmodium falciparum/ultraestrutura , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismoRESUMO
BACKGROUND: Excessive energy intake in modern society has led to an epidemic surge in metabolic diseases, such as obesity and type 2 diabetes, posing profound threats to women's reproductive health. However, the precise impact and underlying pathogenesis of energy excess on female reproduction remain unclear. METHODS: We established an obese and hyperglycemic female mouse model induced by a high-fat and high-sucrose (HFHS) diet, then reproductive phenotypes of these mice were evaluated by examing sexual hormones, estrous cycles, and ovarian morphologies. Transcriptomic and precise metabolomic analyses of the ovaries were performed to compare the molecular and metabolic changes in HFHS mice. Finally, orthogonal partial least squares discriminant analysis was performed to compare the similarities of traits between HFHS mice and women with polycystic ovary syndrome (PCOS). RESULTS: The HFHS mice displayed marked reproductive dysfunctions, including elevated serum testosterone and luteinizing hormone levels, irregular estrous cycles, and impaired folliculogenesis, mimicking the clinical manifestations of women with PCOS. Precise metabolomic overview suggested that HFHS diet disrupted amino acid metabolism in the ovaries of female mice. Additionally, transcriptional profiling revealed pronounced disturbances in ovarian steroid hormone biosynthesis and glucolipid metabolism in HFHS mice. Further multi-omics analyses unveiled prominent aberration in ovarian arginine biosynthesis pathway. Notably, comparisons between HFHS mice and a cohort of PCOS patients identified analogous reproductive and metabolic signatures. CONCLUSIONS: Our results provide direct in vivo evidence for the detrimental effects of overnutrition on female reproduction and offer insights into the metabolic underpinnings of PCOS.
Assuntos
Diabetes Mellitus Tipo 2 , Síndrome do Ovário Policístico , Feminino , Humanos , Animais , Camundongos , Sacarose/efeitos adversos , Diabetes Mellitus Tipo 2/complicações , Reprodução , Dieta , Perfilação da Expressão Gênica , Dieta Hiperlipídica/efeitos adversosRESUMO
Nutrients, such as amino acids and glucose, signal through the Rag GTPases to activate mTORC1. The GATOR1 protein complex-comprising DEPDC5, NPRL2 and NPRL3-regulates the Rag GTPases as a GTPase-activating protein (GAP) for RAGA; loss of GATOR1 desensitizes mTORC1 signalling to nutrient starvation. GATOR1 components have no sequence homology to other proteins, so the function of GATOR1 at the molecular level is currently unknown. Here we used cryo-electron microscopy to solve structures of GATOR1 and GATOR1-Rag GTPases complexes. GATOR1 adopts an extended architecture with a cavity in the middle; NPRL2 links DEPDC5 and NPRL3, and DEPDC5 contacts the Rag GTPase heterodimer. Biochemical analyses reveal that our GATOR1-Rag GTPases structure is inhibitory, and that at least two binding modes must exist between the Rag GTPases and GATOR1. Direct interaction of DEPDC5 with RAGA inhibits GATOR1-mediated stimulation of GTP hydrolysis by RAGA, whereas weaker interactions between the NPRL2-NPRL3 heterodimer and RAGA execute GAP activity. These data reveal the structure of a component of the nutrient-sensing mTORC1 pathway and a non-canonical interaction between a GAP and its substrate GTPase.
Assuntos
Microscopia Crioeletrônica , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/ultraestrutura , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Monoméricas de Ligação ao GTP/ultraestrutura , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Aminoácidos/deficiência , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/química , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/química , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteínas Repressoras/ultraestrutura , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/ultraestruturaRESUMO
Plasmodium vivax is the most widely distributed malaria parasite that infects humans1. P. vivax invades reticulocytes exclusively, and successful entry depends on specific interactions between the P. vivax reticulocyte-binding protein 2b (PvRBP2b) and transferrin receptor 1 (TfR1)2. TfR1-deficient erythroid cells are refractory to invasion by P. vivax, and anti-PvRBP2b monoclonal antibodies inhibit reticulocyte binding and block P. vivax invasion in field isolates2. Here we report a high-resolution cryo-electron microscopy structure of a ternary complex of PvRBP2b bound to human TfR1 and transferrin, at 3.7 Å resolution. Mutational analyses show that PvRBP2b residues involved in complex formation are conserved; this suggests that antigens could be designed that act across P. vivax strains. Functional analyses of TfR1 highlight how P. vivax hijacks TfR1, an essential housekeeping protein, by binding to sites that govern host specificity, without affecting its cellular function of transporting iron. Crystal and solution structures of PvRBP2b in complex with antibody fragments characterize the inhibitory epitopes. Our results establish a structural framework for understanding how P. vivax reticulocyte-binding protein engages its receptor and the molecular mechanism of inhibitory monoclonal antibodies, providing important information for the design of novel vaccine candidates.
Assuntos
Microscopia Crioeletrônica , Plasmodium vivax/química , Plasmodium vivax/ultraestrutura , Proteínas de Protozoários/química , Proteínas de Protozoários/ultraestrutura , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Antígenos CD/química , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos CD/ultraestrutura , Sítios de Ligação , Humanos , Vacinas Antimaláricas/imunologia , Modelos Moleculares , Mutação , Plasmodium vivax/citologia , Plasmodium vivax/genética , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Receptores da Transferrina/química , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Receptores da Transferrina/ultraestrutura , Reticulócitos/metabolismo , Relação Estrutura-Atividade , Transferrina/química , Transferrina/metabolismo , Transferrina/ultraestruturaRESUMO
Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.
Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/química , Reagentes de Ligações Cruzadas/química , Espectrometria de Massas , Modelos Moleculares , Estabilidade Proteica , Transporte Proteico , Transporte de RNARESUMO
North China type coalfield are gradually mining deep, and the mixing of groundwater is intensified. Hydrogen and oxygen isotopes are important elements for tracing groundwater movement. The fractionation response mechanism under mining conditions is not clear. In this paper, combined with numerical simulation, MixSIAR isotope mixing model and other methods, according to the δD, δ18O and hydrochemical information of various water bodies, the impact of coal mining on hydrogen and oxygen isotope fractionation is analyzed from multiple perspectives. The results show that summer soil water is the main source of recharge for limestone water, accounting for 30.7%-41.5%, and the Zhan River is the main source of recharge for limestone water. Before groundwater recharge, evaporation leads to the increase of δ18O in surface water by 0.31-5.58, water loss by 1.81%-28.00%, the increase of δ18O in soil water by 0.47-6.33, and water loss by 2.74%-35.80%. Compared with the coal mining layer, the degree of hydrogen and oxygen isotope drift and water-rock interaction in the coal mine stopping layer are significantly improved. The results of numerical simulation show that the pumping activity reduces the 18O concentration in the mining layer. The ion ratio is used as a new variable to eliminate the influence of water-rock interaction when calculating the mixing ratio. The results show that the limestone water is in a state of receiving external recharge, and mixing effect increases the δ18O in limestone water by 0.86 on average, and the δD increases by 0.72 on average. The research results explain the controlled process of hydrogen and oxygen isotope fractionation under mining conditions, which is of great significance to coal mine safety production.
Assuntos
Carbonato de Cálcio , Água Subterrânea , Isótopos de Oxigênio , Isótopos de Oxigênio/análise , Água Subterrânea/química , Água Subterrânea/análise , Carbonato de Cálcio/química , Carbonato de Cálcio/análise , Minas de Carvão , Deutério/análise , Fracionamento Químico , Mineração , Movimentos da Água , Monitoramento Ambiental/métodos , China , Hidrogênio/análise , Hidrogênio/químicaRESUMO
RNA-dependent RNA polymerases play essential roles in RNA-mediated gene silencing in eukaryotes. In Arabidopsis, RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) physically interacts with DNA-dependent NUCLEAR RNA POLYMERASE IV (Pol IV) and their activities are tightly coupled, with Pol IV transcriptional arrest, induced by the nontemplate DNA strand, somehow enabling RDR2 to engage Pol IV transcripts and generate double-stranded RNAs. The double-stranded RNAs are then released from the Pol IV-RDR2 complex and diced into short-interfering RNAs that guide RNA-directed DNA methylation and silencing. Here we report the structure of full-length RDR2, at an overall resolution of 3.1 Å, determined by cryoelectron microscopy. The N-terminal region contains an RNA-recognition motif adjacent to a positively charged channel that leads to a catalytic center with striking structural homology to the catalytic centers of multisubunit DNA-dependent RNA polymerases. We show that RDR2 initiates 1 to 2 nt internal to the 3' ends of its templates and can transcribe the RNA of an RNA/DNA hybrid, provided that 9 or more nucleotides are unpaired at the RNA's 3' end. Using a nucleic acid configuration that mimics the arrangement of RNA and DNA strands upon Pol IV transcriptional arrest, we show that displacement of the RNA 3' end occurs as the DNA template and nontemplate strands reanneal, enabling RDR2 transcription. These results suggest a model in which Pol IV arrest and backtracking displaces the RNA 3' end as the DNA strands reanneal, allowing RDR2 to engage the RNA and synthesize the complementary strand.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , RNA de Plantas/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA de Plantas , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Modelos Moleculares , Conformação Proteica , RNA de Plantas/genética , RNA Polimerase Dependente de RNA/genética , Transcrição GênicaRESUMO
STUDY QUESTION: Was polycystic ovary syndrome (PCOS), which impairs fertility and adheres to the evolutionary paradox, subject to evolutionary selection during ancestral times and did rapidly diminish in prevalence? SUMMARY ANSWER: This study strengthened the hypothesis that positive selection of genetic variants occurred and may account for the high prevalence of PCOS observed today. WHAT IS KNOWN ALREADY: PCOS is a complex endocrine disorder characterized by both reproductive and metabolic disturbances. As a heritable disease that impairs fertility, PCOS should diminish rapidly in prevalence; however, it is the most common cause of female subfertility globally. Few scientific genetic studies have attempted to provide evidence for the positive selection of gene variants underlying PCOS. STUDY DESIGN, SIZE, DURATION: We performed an evolutionary analysis of 2,504 individuals from 14 populations of the 1000 Genomes Project. PARTICIPANTS/MATERIALS, SETTING, METHODS: We tested the signature of positive selection for 37 single-nucleotide polymorphisms (SNPs) associated with PCOS in previous genome-wide association studies using six parameters of positive selection. MAIN RESULTS AND THE ROLE OF CHANCE: Analyzing the evolutionary indices together, there was obvious positive selection at the PCOS-related SNPs loci, especially within the original evolution window of humans, demonstrated by significant Tajima's D values. Compared to the genome background, six of the 37 SNPs in or close to five genes (DENN domain-containing protein 1A: DENND1A, chromosome 9 open reading frame 3: AOPEP, aminopeptidase O: THADA, diacylglycerol kinase iota: DGKI, and netrin receptor UNC5C: UNC5C) showed significant evidence of positive selection, among which DENND1A, AOPEP, and THADA represent the set of most established susceptibility genes for PCOS. LIMITATIONS, REASONS FOR CAUTION: First, only well-documented SNPs were selected from well-designed experiments. Second, it is difficult to determine which hypothesis of PCOS evolution is at play. After considering the most significant functions of these genes, we found that they had a wide variety of functions with no obvious association between them. WIDER IMPLICATIONS OF THE FINDINGS: Our findings provide additional evidence for the positive evolution of PCOS. Our analyses require confirmation in a larger study with more evolutionary indicators and larger data range. Further research to identify the roles of the DENND1A, AOPEP, THADA, DGKI, and UNC5C genes is also necessary. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Key Research and Development Program of China (2021YFC2700400 and 2021YFC2700701), Basic Science Center Program of NSFC (31988101), CAMS Innovation Fund for Medical Sciences (2021-I2M-5-001), National Natural Science Foundation of China (82192874, 31871509, and 82071606), Shandong Provincial Key Research and Development Program (2020ZLYS02), Taishan Scholars Program of Shandong Province (ts20190988), and Fundamental Research Funds of Shandong University. The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER: N/A.
Assuntos
Infertilidade Feminina , Síndrome do Ovário Policístico , Humanos , Feminino , Síndrome do Ovário Policístico/genética , Estudo de Associação Genômica Ampla , Fertilidade , ReproduçãoRESUMO
HSK3486, a central nervous system inhibitor, has demonstrated superior anesthetic properties in comparison with propofol. Owing to the high liver extraction ratio of HSK3486 and the limited susceptibility to the multi-enzyme inducer, rifampicin, the indicated population of HSK3486 is substantial. Nevertheless, in order to expand the population with indications, it is crucial to assess the systemic exposure of HSK3486 in specific populations. Moreover, the main metabolic enzyme of HSK3486 is UGT1A9, which shows a gene polymorphism in the population. Thus, to scientifically design the dose regimen for clinical trials in specific populations, a HSK3486 physiologically based pharmacokinetic model was developed in 2019 to support model-informed drug development (MIDD). Several untested scenarios of HSK3486 administration in specific populations, and the effect of the UGT1A9 gene polymorphism on HSK3486 exposure were estimated as well. The predicted systemic exposure was increased slightly in patients with hepatic impairment and in the elderly, consistent with later clinical trial data. Meanwhile, there was no change in the systemic exposure of patients with severe renal impairment and in neonates. However, under the same dose, the predicted exposure of pediatric patients aged 1 month to 17 years was decreased significantly (about 21%-39%). Although these predicted results in children have not been validated by clinical data, they are comparable to clinical findings for propofol in children. The dose of HSK3486 in pediatrics may need to be increased and can be adjusted according to the predicted results. Moreover, the predicted HSK3486 systemic exposure in the obese population was increased by 28%, and in poor metabolizers of UGT1A9 might increase by about 16%-31% compared with UGT1A9 extensive metabolizers. Combined with the relatively flat exposure-response relationship for efficacy and safety (unpublished), obesity and genetic polymorphisms are unlikely to result in clinically significant changes in the anesthetic effect at the 0.4 mg/kg dose in adults. Therefore, MIDD can indeed provide supportive information for dosing decisions and facilitate the efficient and effective development of HSK3486.
Assuntos
Hepatopatias , Propofol , Adulto , Idoso , Recém-Nascido , Humanos , Criança , Preparações Farmacêuticas , Modelos Biológicos , Desenvolvimento de MedicamentosRESUMO
DC magnetization is generally considered to suppress the usual local magnetic permeability variation and increase the penetration depth for magnetizing-based eddy current testing (MB-ECT) of ferromagnetic materials. In fact, such simple explanations lead to rough nondestructive evaluation and cause new neglected non-uniform magnetic characteristics. Hence, the "perturbation" of the internal magnetic field variation is analyzed using a magnetic dipole model and the mechanism of magnetic permeability perturbation in MB-ECT is revealed. The theoretical analysis and simulations show that a significant permeability perturbation always appears around a defect and presents opposite features with strong and weak magnetization. Furthermore, experimental results indicate that the hidden signal component arising from the local permeability perturbation is critical for both far-side surface and near-side surface defects in the MB-ECT method.
RESUMO
AIMS: This study aims to develop and verify a physiologically based pharmacokinetic (PBPK) population model for the Chinese geriatric population in Simcyp. METHODS: Firstly, physiological information for the Chinese geriatric population was collected and later employed to develop the Chinese geriatric population model by recalibration of corresponding physiological parameters in the Chinese adult population model available in Simcyp (i.e., Chinese healthy volunteer model). Secondly, drug-dependent parameters were collected for six drugs with different elimination pathways (i.e., metabolized by CYP1A2, CYP3A4 or renal excretion). The drug models were then developed and verified by clinical data from Chinese adults, Caucasian adults and Caucasian elderly subjects to ensure that drug-dependent parameters are correctly inputted. Finally, the tested drug models in combination with the newly developed Chinese geriatric population model were applied to simulate drug concentration in Chinese elderly subjects. The predicted results were then compared with the observations to evaluate model prediction performance. RESULTS: Ninety-eight per cent of predicted AUC, 95% of predicted Cmax , and 100% of predicted CL values were within two-fold of the observed values, indicating all drug models were properly developed. The drug models, combined with the newly developed population model, were then used to predict pharmacokinetics in Chinese elderly subjects aged 60-93. The predicted AUC, Cmax , and CL values were all within two-fold of the observed values. CONCLUSION: The population model for the Chinese elderly subjects appears to adequately predict the concentration of the drug that was metabolized by CYP1A2, CYP3A4 or eliminated by renal clearance.
Assuntos
Citocromo P-450 CYP3A , Modelos Biológicos , Farmacocinética , Adulto , Idoso , Povo Asiático , China , Simulação por Computador , Citocromo P-450 CYP1A2 , Humanos , População BrancaRESUMO
PURPOSE: Elevated oxidative stress has been proposed as an important factor in the pathogenesis of polycystic ovary syndrome (PCOS)-related infertility. Our study was aimed at simultaneously exploring local and systemic oxidative stress in PCOS individuals and its relationship with embryo quality. METHODS: We recruited 86 PCOS cases and 60 controls. Five representative oxidative stress markers, namely, total oxidant capacity (TOC), total antioxidant capacity (TAC), malonaldehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD), were measured in both follicular fluid (FF) and serum. RESULTS: Women with PCOS compared to normal controls had higher levels of TOC in both FF (10.13 ± 2.68 vs.7.03 ± 2.45, P < 0.001) and serum (11.76 ± 2.92 vs. 8.82 ± 2.57, P < 0.001). The oxidative stress index (OSI, the ratio of TOC to TAC) was also higher in PCOS cases. They were still significant after BMI adjustment (Padj<0.01). In addition, the serum OSI level was much higher than the FF OSI level in both groups. Correlation analysis showed that the FF and serum TOC were negatively correlated with the high-quality embryo rate on day 3 and the later blastocyst formation rate in the PCOS group (P < 0.05). The correlation coefficient was higher in FF. Moreover, as the regression analysis data showed, the FF MDA level was significantly associated with embryo quality indicators (P < 0.05). CONCLUSIONS: PCOS was accompanied by elevated oxidative stress in both serum and FF. Even though serum oxidative stress was severe, the study suggested that FF oxidative stress contributed more to embryo quality, to which we should give more attention in the future.
Assuntos
Líquido Folicular/metabolismo , Infertilidade Feminina/genética , Estresse Oxidativo/genética , Síndrome do Ovário Policístico/genética , Adulto , Antioxidantes/metabolismo , Biomarcadores/sangue , Feminino , Glutationa/sangue , Glutationa/genética , Humanos , Infertilidade Feminina/sangue , Infertilidade Feminina/complicações , Infertilidade Feminina/patologia , Malondialdeído/sangue , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/patologia , Superóxido Dismutase/sangueRESUMO
Golgi matrix protein 130 (GM130), encoded by GOLGA2, is the classical marker of the Golgi apparatus. It plays important roles in various mitotic events, such as interacting with importin-alpha and liberating spindle assembly factor TPX2 to regulate mitotic spindle formation. A previous study showed that in vitro knockdown of GM130 could regulate the meiotic spindle pole assembly. In the current study, we found that knockout (KO) mice progressively died, had a small body size and were completely infertile. Furthermore, we constructed an oocyte-specific GM130 knockout mouse model (GM130-ooKO) driven by Gdf9-Cre. Through breeding assays, we found that the GM130-ooKO mice showed similar fecundity as control mice. During superovulation assays, the KO and GM130-ooKO mice had comparable numbers of ovulated eggs, oocyte maturation rates and normal polar bodies, similar to the control groups. Thus, this study indicated that deletion of GM130 might have a limited impact on the maturation and morphology of oocytes. This might due to more than one golgin sharing the same function, with others compensating for the loss of GM130.