Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Chemistry ; : e202402078, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976314

RESUMO

The functionalization of aromatic N-heterocycles through silylium activation demonstrates exceptional selectivity and efficiency. Density functional theory (DFT) calculations unveil the detailed silylium catalysis mechanism and elucidate the origins of selectivity in this reaction. The phosphoramidimidate sulfonamide (PADI) precatalyst orchestrates of the catalytic cycle via three elementary steps. The Brønsted acidity of precatalyst significantly influences both the formation of silylium-based Lewis acid active species and the silylium activation of pyridine. Unlike disulfonimide (DSI)-type precatalysts, both Tf2NH and PADI precatalysts with strong acidities can easily promote the generation of activated silylium pyridine species. A semi-enclosed 'rigid' electronegative cavity in PADI-type anions constructs a well-defined recognition site, facilitating engagement with the positively charged silylium pyridine species. Due to the high electrophilicity and less steric demand at the C4-position of the pyridine substrate, the product with C4-regioselectivity was predominantly generated.

2.
Inorg Chem ; 63(9): 4328-4336, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38367216

RESUMO

The study of structural reconstruction is vital for the understanding of the real active sites in heterogeneous catalysis and guiding the improved catalyst design. Herein, we applied a copper nitride precatalyst in the nitroarene reductive coupling reaction and made a systematic investigation on the dynamic structural evolution behaviors and catalytic performance. This Cu3N precatalyst undergoes a rapid phase transition to nanostructured Cu with rich defective sites, which act as the actual catalytic sites for the coupling process. The nitride-derived defective Cu is very active and selective for azo formation, with 99.6% conversion of nitrobenzene and 97.1% selectivity to azobenzene obtained under mild reaction conditions. Density functional theory calculations suggest that the defective Cu sites play a role for the preferential adsorption of nitrosobenzene intermediates and significantly lowered the activation energy of the key coupling step. This work not only proposes a highly efficient noble-metal-free catalyst for nitroarenes coupling to valuable azo products but also may inspire more scientific interest in the study of the dynamic evolution of metal nitrides in different catalytic reactions.

3.
Nanotechnology ; 35(33)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759635

RESUMO

The use of two-dimensional materials and van der Waals heterostructures holds great potential for improving the performance of memristors Here, we present SnS2/MoTe2heterostructure synaptic transistors. Benefiting from the ultra-low dark current of the heterojunction, the power consumption of the synapse is only 19pJ per switching under 0.1 V bias, comparable to that of biological synapses. The synaptic device based on the SnS2/MoTe2demonstrates various synaptic functionalities, including short-term plasticity, long-term plasticity, and paired-pulse facilitation. In particular, the synaptic weight of the excitatory postsynaptic current can reach 109.8%. In addition, the controllability of the long-term potentiation and long-term depression are discussed. The dynamic range (Gmax/Gmin) and the symmetricity values of the synaptic devices are approximately 16.22 and 6.37, and the non-linearity is 1.79. Our study provides the possibility for the application of 2D material synaptic devices in the field of low-power information storage.

4.
J Integr Neurosci ; 23(6): 118, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38940085

RESUMO

BACKGROUND: Alcohol abuse, a prevalent global health issue, is associated with the onset of cognitive impairment and neurodegeneration. Actin filaments (F-actin) and microtubules (MTs) polymerized from monomeric globular actin (G-actin) and tubulin form the structural basis of the neuronal cytoskeleton. Precise regulation of the assembly and disassembly of these cytoskeletal proteins, and their dynamic balance, play a pivotal role in regulating neuronal morphology and function. Nevertheless, the effect of prolonged alcohol exposure on cytoskeleton dynamics is not fully understood. This study investigates the chronic effects of alcohol on cognitive ability, neuronal morphology and cytoskeleton dynamics in the mouse hippocampus. METHODS: Mice were provided ad libitum access to 5% (v/v) alcohol in drinking water and were intragastrically administered 30% (v/v, 6.0 g/kg/day) alcohol for six weeks during adulthood. Cognitive functions were then evaluated using the Y maze, novel object recognition and Morris water maze tests. Hippocampal histomorphology was assessed through hematoxylin-eosin (HE) and Nissl staining. The polymerized and depolymerized states of actin cytoskeleton and microtubules were separated using two commercial assay kits and quantified by Western blot analysis. RESULTS: Mice chronically exposed to alcohol exhibited significant deficits in spatial and recognition memory as evidenced by behavioral tests. Histological analysis revealed notable hippocampal damage and neuronal loss. Decreased ratios of F-actin/G-actin and MT/tubulin, along with reduced levels of polymerized F-actin and MTs, were found in the hippocampus of alcohol-treated mice. CONCLUSIONS: Our findings suggest that chronic alcohol consumption disrupted the assembly of the actin cytoskeleton and MTs in the hippocampus, potentially contributing to the cognitive deficits and pathological injury induced by chronic alcohol intoxication.


Assuntos
Citoesqueleto de Actina , Etanol , Hipocampo , Microtúbulos , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Masculino , Etanol/farmacologia , Etanol/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Depressores do Sistema Nervoso Central/farmacologia , Depressores do Sistema Nervoso Central/administração & dosagem , Modelos Animais de Doenças , Comportamento Animal/efeitos dos fármacos
5.
J Sci Food Agric ; 104(6): 3648-3653, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224494

RESUMO

BACKGROUND: Tyrosinase, a copper-containing metalloenzyme with catalytic activity, is widely found in mammals. It is the key rate-limiting enzyme that catalyzes melanin synthesis. For humans, tyrosinase is beneficial to the darkening of eyes and hair. However, excessive deposition of melanin in the skin can lead to dull skin color and lead to pigmentation. Therefore, many skin-whitening compounds have been developed to decrease tyrosinase activity. This study aimed to identify a new tyrosinase inhibitory peptide through enzymatic hydrolysis, in vitro activity verification, molecular docking, and molecular dynamics (MD) simulation. RESULTS: A tripeptide Asp-Glu-Arg (DER) was identified, with a '-CDOCKER_Energy' value of 121.26 Kcal mol-1 . DER has effective tyrosinase inhibitory activity. Research shows that its half maximal inhibitory concentration value is 1.04 ± 0.01 mmol L-1 . In addition, DER binds to tyrosinase residues His85, His244, His259, and Asn260, which are key residues that drive the interaction between the peptide and tyrosinase. Finally, through MD simulation, the conformational changes and structural stability of the complexes were further explored to verify and supplement the results of molecular docking. CONCLUSION: This experiment shows that DER can effectively inhibit tyrosinase activity. His244, His259, His260, and Asn260 are the critical residues that drive the interaction between the peptide and tyrosinase, and hydrogen bonding is an important force. DER from Spirulina has the potential to develop functional products with tyrosinase inhibition. © 2024 Society of Chemical Industry.


Assuntos
Monofenol Mono-Oxigenase , Ficocianina , Spirulina , Humanos , Animais , Simulação de Acoplamento Molecular , Spirulina/metabolismo , Melaninas/metabolismo , Inibidores Enzimáticos/química , Peptídeos , Mamíferos/metabolismo
6.
Angew Chem Int Ed Engl ; : e202412296, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078406

RESUMO

The development of simplified synthetic strategy to create structurally and functionally diverse pseudo-natural macrocyclic molecules is highly appealing but poses a marked challenge. Inspired by natural scaffolds, herein, we describe a practical and concise ligand-enabled Pd(II)-catalysed sp3 C‒H alkylation, olefination and arylation macrocyclization, which could offer a novel set of pseudo-natural macrocyclic sulfonamides. Interestingly, the potential of ligand acceleration in C‒H activation is also demonstrated by an unprecedented enantioselective sp3 C‒H alkylation macrocyclization. Moreover, a combination of in silico screening and biological evaluation led to the identification of a novel spiro-grafted macrocyclic sulfonamide 2a, which showed a promising efficacy for the treatment of Parkinson's disease (PD) in a mouse model through the activation of silent information regulator sirtuin 3 (SIRT3).

7.
Adv Mater ; 36(13): e2308647, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38143285

RESUMO

Seawater electrolysis (SWE) is a promising and potentially cost-effective approach to hydrogen production, considering that seawater is vastly abundant and SWE is able to combine with offshore renewables producing green hydrogen. However, SWE has long been suffering from technical challenges including the high energy demand and interference of chlorine chemistry, leading electrolyzers to a low efficiency and short lifespan. In this context, hybrid SWE, operated by replacing the energy-demanding oxygen evolution reaction and interfering chlorine evolution reaction (CER) with a thermodynamically more favorable anodic oxidation reaction (AOR) or by designing innovative electrolyzer cells, has recently emerged as a better alternative, which not only allows SWE to occur in a safe and energy-saving manner without the notorious CER, but also enables co-production of value-added chemicals or elimination of environmental pollutants. This review provides a first account of recent advances in hybrid SWE for hydrogen production. The substitutional AOR of various small molecules or redox mediators, in couple with hydrogen evolution from seawater, is comprehensively summarized. Moreover, how the electrolyzer cell design helps in hybrid SWE is briefly discussed. Last, the current challenges and future outlook about the development of the hybrid SWE technology are outlined.

8.
Mol Nutr Food Res ; 68(14): e2300552, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38366946

RESUMO

SCOPE: Mizuhopecten yessoensis-derived tripeptide Asn-Cys-Trp (NCW) exhibits a potent antihypertensive effect in vivo. However, a lack of knowledge of the antihypertensive mechanism of tripeptide NCW limits its application for functional foods industrialization. The purpose of this study is to elucidate the corresponding targets and mechanisms of tripeptide NCW in hypertension regulation. METHODS AND RESULTS: Administration of tripeptide NCW for 3 weeks, the blood pressure of spontaneously hypertensive rats (SHRs) is significantly decreased. After sacrifice, the serum sample is analyzed using tandem mass tag (TMT)-based liquid chromatography with tandem mass spectrometry to identify differentially expressed proteins. The proteomic analysis indicates that tripeptide NCW administration alters serum protein profiles in SHR rats, significantly upregulating 106 proteins and downregulating 30 proteins. These proteins enhance the glycolysis, glucose, and TCA cycle, improve amino metabolism, trigger the cAMP/PKA, cGMP/PKG, PI3K/AKT, and AMPK signal pathways, and inhibit Ras-regulated JNK activation, TGF-ß/MAPK, and TGF-ß/ RhoA/ROCK pathways. CONCLUSION: Tripeptide NCW supplementation is demonstrated to regulate signal pathways involved in the control of blood pressure and regulate the energy and amino acids metabolic processes in serum, providing important insights into the protective effects of tripeptide NCW on hypertension.


Assuntos
Anti-Hipertensivos , Pressão Sanguínea , Hipertensão , Oligopeptídeos , Ratos Endogâmicos SHR , Animais , Anti-Hipertensivos/farmacologia , Masculino , Oligopeptídeos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteômica/métodos , Ratos
9.
Math Biosci Eng ; 21(2): 3364-3390, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38454732

RESUMO

In order to meet the efficiency and smooth trajectory requirements of the casting sorting robotic arm, we propose a time-optimal trajectory planning method that combines a heuristic algorithm inspired by the behavior of the Genghis Khan shark (GKS) and segmented interpolation polynomials. First, the basic model of the robotic arm was constructed based on the arm parameters, and the workspace is analyzed. A matrix was formed by combining cubic and quintic polynomials using a segmented approach to solve for 14 unknown parameters and plan the trajectory. To enhance the smoothness and efficiency of the trajectory in the joint space, a dynamic nonlinear learning factor was introduced based on the traditional Particle Swarm Optimization (PSO) algorithm. Four different biological behaviors, inspired by GKS, were simulated. Within the premise of time optimality, a target function was set to effectively optimize within the feasible space. Simulation and verification were performed after determining the working tasks of the casting sorting robotic arm. The results demonstrated that the optimized robotic arm achieved a smooth and continuous trajectory velocity, while also optimizing the overall runtime within the given constraints. A comparison was made between the traditional PSO algorithm and an improved PSO algorithm, revealing that the improved algorithm exhibited better convergence. Moreover, the planning approach based on GKS behavior showed a decreased likelihood of getting trapped in local optima, thereby confirming the effectiveness of the proposed algorithm.

10.
Food Funct ; 15(12): 6274-6288, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38787733

RESUMO

Bioactive oligopeptides have gained increasing attention due to their diverse physiological functions, and these can be transported into the vasculature via transcellular and paracellular pathways. Among these, paracellular transport through the intercellular space is a passive diffusion process without energy consumption. It is currently the most frequently reported absorption route for food-derived bioactive oligopeptides. Previous work has demonstrated that paracellular pathways are mainly controlled by tight junctions, but the mechanism by which they regulate paracellular absorption of bioactive oligopeptides remains unclear. In this review, we summarized the composition of paracellular pathways across the intercellular space and elaborated on the paracellular transport mechanism of bioactive oligopeptides in terms of the interaction between oligopeptides and tight junction proteins, the protein expression level of tight junctions, the signaling pathways regulating intestinal permeability, and the properties of oligopeptides themselves. These findings contribute to a more profound understanding of the paracellular absorption of bioactive oligopeptides.


Assuntos
Absorção Intestinal , Oligopeptídeos , Junções Íntimas , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Oligopeptídeos/farmacocinética , Humanos , Junções Íntimas/metabolismo , Animais , Transporte Biológico , Mucosa Intestinal/metabolismo , Proteínas de Junções Íntimas/metabolismo
11.
J Biomed Opt ; 29(Suppl 1): S11512, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38125718

RESUMO

Significance: In nonballistic regime, optical scattering impedes high-resolution imaging through/inside complex media, such as milky liquid, fog, multimode fiber, and biological tissues, where confocal and multiphoton modalities fail. The significant tissue inhomogeneity-induced distortions need to be overcome and a technique referred as optical wavefront shaping (WFS), first proposed in 2007, has been becoming a promising solution, allowing for flexible and powerful light control. Understanding the principle and development of WFS may inspire exciting innovations for effective optical manipulation, imaging, stimulation, and therapy at depths in tissue or tissue-like complex media. Aim: We aim to provide insights about what limits the WFS towards biomedical applications, and how recent efforts advance the performance of WFS among different trade-offs. Approach: By differentiating the two implementation directions in the field, i.e., precompensation WFS and optical phase conjugation (OPC), improvement strategies are summarized and discussed. Results: For biomedical applications, improving the speed of WFS is most essential in both directions, and a system-compatible wavefront modulator driven by fast apparatus is desired. In addition to that, algorithm efficiency and adaptability to perturbations/noise is of concern in precompensation WFS, while for OPC significant improvements rely heavily on integrating physical mechanisms and delicate system design for faster response and higher energy gain. Conclusions: Substantial improvements in WFS implementations, from the aspects of physics, engineering, and computing, have inspired many novel and exciting optical applications that used to be optically inaccessible. It is envisioned that continuous efforts in the field can further advance WFS towards biomedical applications and guide our vision into deep biological tissues.


Assuntos
Luz , Imagem Óptica , Imagem Óptica/métodos
12.
Heliyon ; 10(2): e24070, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293431

RESUMO

Bisphenol A (BPA) is a commonly utilized phenolic contaminant in several manufacturing processes, contributing to environmental pollution. Therefore, the detection of BPA holds significant importance for monitoring water quality. In this work, we report a robust electrochemical detection method for BPA utilizing cobalt-nickel bimetal phosphide nanoparticles (CoNiP) supported on reduced graphene oxide (rGO). The CoNiP@rGO-modified glassy carbon electrode exhibits remarkable electrochemical activity in BPA detection. The detection mechanism is controlled by adsorption-mediated electron transfer, showcasing a low limit of detection (LOD) at 0.38 nM and a high sensitivity of 96.4 A M-1 cm-2 within the linear range of 0.001-8 µM. Furthermore, our developed sensor demonstrates good reproducibility and successfully detected BPA in actual water samples. The electrochemical activity of CoNiP@rGO was also characterized for hydroquinone (HQ) detected through a diffusion-controlled mechanism, displaying an excellent sensitivity of 36.4 A M-1 cm-2 across a broad linear range. These findings underscore the promising potential of CoNiP@rGO as a candidate for electrochemical detection of phenolic contaminants, especially in the sensing of BPA in environmental water samples. This efficacy is attributed to the modulation of its electronic properties, combined with its large electroactive surface area and low electron-transfer resistance.

13.
Environ Sci Pollut Res Int ; 31(20): 29218-29231, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568313

RESUMO

The mobilization of internal phosphorus (P) plays a crucial role in transitioning nutrient limitations within lake ecosystems. While previous research has extensively examined P release in littoral zones influenced by fluctuating water levels, there is a paucity of studies addressing the implications of sustained water level rise in this context, particularly as it pertains to nutrient limitations in benthic algae. To address this gap, we conducted an integrated study in Qinghai Lake. In the field sampling and microcosm experiment, we found that P concentrations are elevated in areas subjected to short-term inundation compared to those enduring prolonged inundation, primarily due to the dissolution of sedimentary P fractions. The results of nutrient diffusing substrata (NDS) bioassays indicated that benthic algae in Qinghai Lake displayed either P limitation or NP co-limitation. The transition from P limitation to NP co-limitation suggested that internal P release may serve to ameliorate nutrient limitations in benthic algae. This phenomenon could potentially contribute to the proliferation of Cladophora in the littoral zones of Qinghai Lake, thereby posing long-term implications for the lake's aquatic ecosystem, particularly under conditions of sustained water level rise.


Assuntos
Ecossistema , Lagos , Fósforo , Solo , Fósforo/análise , Lagos/química , China , Solo/química , Nutrientes/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise
14.
ACS Appl Mater Interfaces ; 16(13): 16573-16579, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511295

RESUMO

The intrinsic stability of the acceptor is a crucial component of the photovoltaic device stability. In this study, we investigated the efficiency and stability of the nonfused-ring acceptors LC8 and BC8 under indoor light conditions. Interestingly, we found that devices based on BC8 with terminal side chains exhibited a higher indoor efficiency and stability. Through accelerated aging experiments, we discovered that the acceptors generate singlet oxygen under light exposure with BC8 demonstrating lower levels of ROS compared to LC8. We attribute this difference to the modulation of the acceptor aggregation orientation. Furthermore, the generated reactive oxygen species (ROS) further deteriorate the acceptor structure, and this phenomenon is also observed in high-efficiency acceptor structures, such as Y6. Our research reveals important mechanisms of acceptor photo-oxidation processes, providing a theoretical basis for enhancing the intrinsic stability of acceptors.

15.
Chem Sci ; 15(31): 12559-12568, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39118605

RESUMO

Investigation of electron transfer (ET) between photosensitizers (PSs) and adjacent substrates in hypoxic tumors is integral to highly efficient tumor therapy. Herein, the oxygen-independent ET pathway to generate hydrogen free radicals (H˙) was established by the in situ self-assembled phototherapeutic agent d-ST under near-infrared (NIR)-light irradiation, coupled with the oxidation of reduced coenzyme NADPH, which induced ferroptosis and effectively elevated the therapeutic performance in hypoxic tumors. The higher surface energy and longer exciton lifetimes of the fine crystalline d-ST nanofibers were conducive to improving ET efficiency. In hypoxic conditions, the excited d-ST can effectively transfer electrons to water to yield H˙, during which the overexpressed NADPH with rich electrons can power the electron flow to facilitate the generation of H˙, accompanied by NADP+ formation, disrupting cellular homeostasis and triggering ferroptosis. Tumor-bearing mouse models further showed that d-ST accomplished excellent phototherapy efficacy. This work sheds light onto the versatile electron pathways between PSs and biological substrates.

16.
Foods ; 13(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063327

RESUMO

The objective of this study was to investigate the umami characteristics of soy sauce using electronic tongue evaluation and amino acid composition and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. The soy sauce peptides were isolated from soy sauce using XAD-16 macroporous resin combined with ethanol solution. The results showed that the soy sauce peptide fraction eluted by 60% ethanol (SS-60%) exhibited a prominent umami taste, and the umami scores were highly positively correlated with the amino acid nitrogen contents of soy sauces. The umami scores of SS-60% were significantly positively correlated with the contents of free amino acids. Especially, Phe showed the highest positive correlation with the umami scores. In addition, five characteristic ion peaks with m/z at 499, 561, 643, 649, and 855 were identified in the peptide mass fingerprinting. Therefore, this study provides new insights into the umami characteristics for the taste evaluation and reality identification of soy sauce.

17.
J Med Chem ; 67(14): 11917-11936, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38958057

RESUMO

Mycobacterium tuberculosis (Mtb), the infectious agent of tuberculosis (TB), causes over 1.5 million deaths globally every year. Host-directed therapies (HDT) for TB are desirable for their potential to shorten treatment and reduce the development of antibiotic resistance. Previously, we described a modular biomimetic strategy to identify SMIP-30, targeting PPM1A (IC50 = 1.19 µM), a metal-dependent phosphatase exploited by Mtb to survive intracellularly. SMIP-30 restricted the survival of Mtb in macrophages and lungs of infected mice. Herein, we redesigned SMIP-30 to create SMIP-031, which is a more potent inhibitor for PPM1A (IC50 = 180 nM). SMIP-031 efficiently increased the level of phosphorylation of S403-p62 and the expression of LC3B-II to activate autophagy, resulting in the dose-dependent clearance of Mtb in infected macrophages. SMIP-031 possesses a good pharmacokinetic profile and oral bioavailability (F = 74%). In vivo, SMIP-031 is well tolerated up to 50 mg/kg and significantly reduces the bacteria burden in the spleens of infected mice.


Assuntos
Antituberculosos , Autofagia , Mycobacterium tuberculosis , Proteína Fosfatase 2C , Autofagia/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Camundongos , Humanos , Proteína Fosfatase 2C/metabolismo , Proteína Fosfatase 2C/antagonistas & inibidores , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/uso terapêutico , Antituberculosos/farmacocinética , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Feminino
18.
Chem Sci ; 15(24): 9216-9223, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38903208

RESUMO

The electrochemical chlorine evolution reaction (CER) is a critical anode reaction in chlor-alkali electrolysis. Although precious metal-based mixed metal oxides (MMOs) have long been used as CER catalysts, they suffer from high cost and poor selectivity due to the competing oxygen evolution reaction (OER). Single-atom catalysts (SACs), featuring high atom utilization efficiency, have captured widespread interest in diverse applications. However, the single-atom sites in SACs are generally recognized as independent motifs and the interplay of adjacent sites is largely overlooked. Herein, we report a "precursor-preselected" cage-encapsulated strategy to synthesize atomically dispersed dinuclear iridium active sites bridged by oxygen that are supported on nitrogen-doped carbon (Ir2-ONC). The dinuclear Ir2-ONC catalyst exhibits a CER onset potential of 1.375 V vs. normal hydrogen electrode, a high faradaic efficiency of >95%, and a high mass activity of 14321.6 A gIr -1, much better than the Ir SACs, which demonstrates the significance of coordination and electronic structure regulation for atomically dispersed catalysts. Density functional theory calculations and ab initio molecular dynamics simulations confirm that the unique dinuclear structure facilitates Cl- adsorption, resulting in improved catalytic CER performance.

19.
Adv Mater ; 36(31): e2403792, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38742953

RESUMO

Seawater electrolysis is a potentially cost-effective approach to green hydrogen production, but it currently faces substantial challenges for its high energy consumption and the interference of chlorine evolution reaction (ClER). Replacing the energy-demanding oxygen evolution reaction with methanol oxidation reaction (MOR) represents a promising alternative, as MOR occurs at a significantly low anodic potential, which cannot only reduce the voltage needed for electrolysis but also completely circumvents ClER. To this end, developing high-performance MOR catalysts is a key. Herein, a novel quaternary Pt1.8Pd0.2CuGa/C intermetallic nanoparticle (i-NP) catalyst is reported, which shows a high mass activity (11.13 A mgPGM -1), a large specific activity (18.13 mA cmPGM -2), and outstanding stability toward alkaline MOR. Advanced characterization and density functional theory calculations reveal that the introduction of atomically distributed Pd in Pt2CuGa intermetallic markedly promotes the oxidation of key reaction intermediates by enriching electron concentration around Pt sites, resulting in weak adsorption of carbon-containing intermediates and favorable adsorption of synergistic OH- groups near Pd sites. MOR-assisted seawater electrolysis is demonstrated, which continuously operates under 1.23 V for 240 h in simulated seawater and 120 h in natural seawater without notable degradation.

20.
Nat Commun ; 15(1): 2607, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521827

RESUMO

Artificial intelligence has gained significant attention for exploiting optical scattering for optical encryption. Conventional scattering media are inevitably influenced by instability or perturbations, and hence unsuitable for long-term scenarios. Additionally, the plaintext can be easily compromised due to the single channel within the medium and one-to-one mapping between input and output. To mitigate these issues, a stable spin-multiplexing disordered metasurface (DM) with numerous polarized transmission channels serves as the scattering medium, and a double-secure procedure with superposition of plaintext and security key achieves two-to-one mapping between input and output. In attack analysis, when the ciphertext, security key, and incident polarization are all correct, the plaintext can be decrypted. This system demonstrates excellent decryption efficiency over extended periods in noisy environments. The DM, functioning as an ultra-stable and active speckle generator, coupled with the double-secure approach, creates a highly secure speckle-based cryptosystem with immense potentials for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA