Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37569896

RESUMO

To better understand the potential toxicity risks of isoflucypram in humans, The interaction between isoflucypram and HSA (human serum albumin) was studied through molecular docking, molecular dynamics simulations, ultraviolet-visible absorption, fluorescence, synchronous fluorescence, three-dimensional fluorescence, Fourier transform infrared spectroscopies, and circular dichroism spectroscopies. The interaction details were studied using the molecular docking method and molecular dynamics simulation method. The results revealed that the effect of isoflucypram on human serum albumin was mixed (static and dynamic) quenching. Additionally, we were able to obtain important information on the number of binding sites, binding constants, and binding distance. The interaction between isoflucypram and human serum albumin occurred mainly through hydrogen bonds and van der Waals forces. Spectroscopic results showed that isoflucypram caused conformational changes in HSA (human serum albumin), in which the α-helix was transformed into a ß-turn, ß-sheet, and random coil, causing the HSA structure to loosen. By providing new insights into the mechanism of binding between isoflucypram and human serum albumin, our study has important implications for assessing the potential toxicity risks associated with isoflucypram exposure.


Assuntos
Fungicidas Industriais , Albumina Sérica Humana , Humanos , Sítios de Ligação , Dicroísmo Circular , Fungicidas Industriais/toxicidade , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Albumina Sérica Humana/química , Espectrometria de Fluorescência/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Termodinâmica
2.
Plant Dis ; 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324200

RESUMO

Tea-oil tree (Camellia oleifera Abel) is an important economic woody plant in southern China. The buds, fruits, and leaves of tea oil tree are all susceptible to the disease, causing the wilt or even fall of the plant. Every year, the disease incidence of anthracnose reached 20%-40% in diseased fields. In 2020, leaves with anthracnose were collected from the main producing areas of tea-oil tree in Yunnan Province and Guizhou Province, China. To isolate the pathogen, several fragments of diseased tissues (5×5mm) were disinfected in 75% alcohol for 40 s, and rinsed 3 times in sterilized water. Then, tissues were placed on PDA medium and incubated at 26℃ for 5 days. Fungal isolates with morphology characteristics similar to Colletotrichum spp. were consistently recovered from diseased tissues. Eighteen fungal isolates were obtained. Among them, 3 representative single-spore isolates (C2, gy15, Ch) were picked for further analysis. The isolates C2 and gy15 on the PDA were gray-white in the initial stage, and later became olive green and spread to the edge. Abundant orange-red conidial masses were present in the colony surface. Conidia were cylindrical and with blunt circles at both ends, with a size of 9.9 µm ~ 21.8 µm × 4.0 µm ~ 6.8 µm (n=50). The hyphae of isolate Ch on PDA were thin, cotton-like, gray to gray-black; the center of the back of the colony was brown, and the color of the colony became darker, and concentric rings could be produced. The conidia were cylindrical , with blunt circles at both ends, with a size of 6.3 µm ~15.0 µm × 3.2 µm ~ 7.0µm (n=50). In order to further identify the pathogens, the internal transcribed spacer (ITS) region of ribosomal DNA, actin (ACT), chitin synthase (CHS), ß-tubulin (TUB2), calmodulin (CAL) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were amplified (Weir et al. 2012; Yang et al. 2009). The resulting sequences were deposited under the GenBank accession numbers OK148894, OM397909, OM249943, OL422149, OM184266 and OM718003 for C2,OK148975, OM397910, OM249944, OL422150, OM184267, OM718004 for gy15, OK148976, OM397911, OM249945, OL422151, OM184268 and OM718005 for Ch. A BLAST search showed that the sequences of isolates C2 and gy15 had 99.57% to 100% similarity to the type strain of Colletotrichum kahawae ICMP12952. The sequences of isolate Ch had 99.03% to 100% similarity to the type strain of Colletotrichum horri ICMP 17968. Further, a phylogenetic tree based on the combined ITS, ACT, CHS, TUB, CAL, and GAPDH sequence using the neighbor-joining algorithm revealed that the isolates were C. kahawae and C. horri (Fig. 1). Pathogenicity assays were conducted on healthy leaves collected from 1-year-old tea-oil tree. The experiments were repeated twice. The leaves were surface-sterilized with 75% ethanol. After drying, they were placed in a plastic box pre-laid with sterilized absorbent paper. The leaf surface was slightly pierced with a sterile needle, and each stab wound was inoculated with 10 µL of conidial suspension (1×106 conidia/ml). All inoculated leaves were placed in a moist chamber at 25℃ with 80% relative humidity. After 10 days, inoculated leaves showed similar symptoms as observed in the field, whereas controls remained symptomless. C. kahawae and C. horri were re-isolated from the diseased leaves, and identifed by sequencing. C. kahawae is widespread on coffee in Africa (Waller et al. 1993). C. horri has been associated with fruit and stem diseases of Diospyros kaki from China, Japan, and New Zealand (Weir et al. 2010). To our knowledge, this is the first report of C. kahawa and C. horri causing anthracnose of tea-oil tree.

3.
Plant Dis ; 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869583

RESUMO

Root rot of peanut, caused by Fusarium spp., is a devastating disease in most peanut cultivation regions. In this reported outbreak, Fusarium root rot of peanut has been observed in Henan province, China in July 2021. About 20% of peanuts in a field (0.66 ha) were affected. Early symptoms comprised the wilt of the lower leaves, and the darkening of the vascular tissue of roots, which turned brown. Progressively, the whole plant wilted, the roots rotted, and the plant ultimately died. Pathogenic species were isolated from plants showing symptoms of root rot in the field. A total of 206 Fusarium isolates were generated, and 16 isolates were preliminarily identified as Fusarium fujikuroi based on morphological characteristics. Isolates were obtained and grown on PDA plates. Isolates developed floccose white aerial mycelia with reddish-pink coloration in the medium in 2 weeks on the benchtop. Macroconidia were 3-5 septate, measuring 27.5 to 48.8 × 2.6 to 3.8 µm (avg. 36.7 × 3.6 µm, n=50). Microconidia were abundant in chains, mainly asepatate, oval to kidney-shaped, 4.0 to 11.6 × 2.5 to 4.1 µm (avg. 5.8 ×3.1 µm, n=50). DNA was extracted from mycelium and the following genes were amplified and sequenced: the internal transcribed spacer (ITS) region using ITS1/ITS4 primers (White et al.1990) (Genbank assessions MZ831304 to MZ831308), the partial calmodulin gene (CAM, primer CL1/CL2A, O'Donnell.)(Genbank assession MZ856333 to MZ856337) and the partial translation elongation factor (EF-1α) using primer EF1/EF2 (Geiser et al.)(Genbank assession MZ856338 to MZ8564342). FUSARIUM-ID analysis showed 98.18% to 100% similarity with sequences of the F. fujikuroi species complex. The phylogenetic analysis was conducted using a neighbor-joining algorithm based on the ITS, CAM, and EF-1α gene sequences. The isolates were clustered with F. fujikuroi clade (Supplementary Fig.1). Koch's postulates were conducted using a sand-cornmeal-inoculum-layer method (Bilgi et al.). Briefly, 400 ml plastic boxes were filled with 15g of sterilized premium-grade coarse vermiculite, followed by a 15 g of inoculum prepared as sand-cornmeal mixture inoculum. The inoculum for each F. fujikuroi isolates was prepared by infesting a pre-sterilized sand-cornmeal mixture with three 5 mm plugs of cultures. Three F. fujikuroi isolates and PDA plugs were inoculated to serve as positive control and non-inoculated control treatments, respectively. The completed colonization of the sand-cornmeal mixture was finished by incubating at 25 ℃ for 7-10 days. Eight pre-germinated seeds of cv. Luhua No.1 was then covered with another 8 g of vermiculite. Peanuts were grown at 25 °C with 85% relative humidity under a light/dark cycle of 14h/10h. After 14 days of incubation, the inoculated plants showed typical symptoms of root rot similar to those in the field: pre-emergence damping-off, reddish-brown lesions on the tap, and lateral roots. F. fujikuroi was successfully re-isolated from inoculated plants but not from the controls and identified as described above. F. fujikuroi was reported to cause bakanae disease of rice (Amatulli et. al.), and root rot of soybeans (Zhao et. al.). To the best of our knowledge, this is the first record of F. fujikuroi causing root rot of peanut in China.

4.
Plant Dis ; 106(4): 1134-1142, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34752126

RESUMO

Microbial communities are essential for soil health, but fungicide application may have significant effects on their structure. It is difficult to predict whether nontarget pathogens of applied fungicides in the soil will cause crop damage. Tebuconazole is a triazole fungicide that can be used as a seed treatment and, thereby, introduced to the soil. However, seed-applied tebuconazole has a potential risk of causing poor emergence of corn (Zea mays) seedlings. Using soil with a history of poor corn seedling emergence, we demonstrate through TA cloning and isolation that the poor emergence of corn seedlings from tebuconazole-coated corn seeds was primarily because of infection by surviving soil pathogens, specifically Pythium species that are not targeted by tebuconazole, rather than the phytotoxic effects of tebuconazole. Bioassay tests on tebuconazole-amended media showed that tebuconazole can suppress soil fungi while allowing Pythium to grow. Pythium species primarily contributing to the corn seed rot were more pathogenic at cooler temperatures. Furthermore, the nontarget biocontrol agent of Trichoderma spp. was strongly inhibited by tebuconazole. Taken together, the nontarget effects of tebuconazole are likely not significant under favorable plant growing conditions but are considerable because of low-temperature stress.


Assuntos
Fungicidas Industriais , Pythium , Fungicidas Industriais/farmacologia , Prevalência , Plântula , Sementes/microbiologia , Solo , Triazóis/farmacologia , Zea mays
5.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163447

RESUMO

Botrytis cinerea is considered an important plant pathogen and is responsible for significant crop yield losses. With the frequent application of commercial fungicides, B. cinerea has developed resistance to many frequently used fungicides. Therefore, it is necessary to develop new kinds of fungicides with high activity and new modes of action to solve the increasingly serious problem of resistance. During our screening of fungicide candidates, one novel sulfonamide compound, N-(2-trifluoromethyl-4-chlorphenyl)-2-oxocyclohexyl sulfonamide (L13), has been found to exhibit good fungicidal activity against B. cinerea. In this work, the mode of action of L13 against B. cinerea and the field control effect on tomato gray mold was studied. L13 had good control against B. cinerea resistant to carbendazim, diethofencarb, and iprodione commercial fungicides in the pot culture experiments. SEM and TEM observations revealed that L13 could cause obvious morphological and cytological changes to B. cinerea, including excessive branching, irregular ramification or abnormal configuration, and the decomposition of cell wall and vacuole. L13 induced more significant electrolyte leakage from hyphae than procymidone as a positive control. L13 had only a minor effect on the oxygen consumption of intact mycelia, with 2.15% inhibition at 50 µg/mL. In two locations over 2 years, the field control effect of L13 against tomato gray mold reached 83% at a rate of 450 g ai ha-1, better than the commercial fungicide of iprodione. Moreover, toxicological tests demonstrated the low toxicological effect of L13. This research seeks to provide technical support and theoretical guidance for L13 to become a real commercial fungicide.


Assuntos
Botrytis/crescimento & desenvolvimento , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle , Solanum lycopersicum/crescimento & desenvolvimento , Sulfonamidas/farmacologia , Administração Cutânea , Administração Oral , Animais , Botrytis/efeitos dos fármacos , Botrytis/metabolismo , Parede Celular/efeitos dos fármacos , Farmacorresistência Fúngica , Fungicidas Industriais/administração & dosagem , Fungicidas Industriais/efeitos adversos , Solanum lycopersicum/microbiologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Coelhos , Ratos , Pele/efeitos dos fármacos , Sulfonamidas/administração & dosagem , Sulfonamidas/efeitos adversos , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
6.
Phytopathology ; 110(3): 615-625, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31799899

RESUMO

Colletotrichum spp. isolates contain two paralogous CYP51 genes that encode sterol 14-demethylase enzymes; however, their role in sensitivity to demethylation inhibitor (DMI) fungicides is yet to be determined. In this study, each of the two genes from Colletotrichum fioriniae and C. nymphaeae was able to rescue the function of CYP51 in the yeast Saccharomyces cerevisiae, demonstrating their independent function. Deletion of CYP51A led to increased sensitivity to propiconazole, diniconazole, prothioconazole, cyproconazole, epoxiconazole, flutriafol, prochloraz, and difenoconazole in C. fioriniae, and to the same fungicides and tebuconazole in C. nymphaeae, with the exception of prochloraz. Deletion of CYP51B in C. fioriniae and CYP51B in C. nymphaeae made mutants increasingly sensitive to five of nine DMI fungicides tested. The results suggest species-specific, differential binding of DMI fungicides onto the two CYP51 enzymes. Pairing DMIs with different effects on CYP51A and -B deletion mutants resulted in synergistic effects, as determined in mycelial growth inhibition experiments. Deletion mutants showed no fitness penalty in terms of mycelial growth, sporulation, and virulence. Our study elucidates the effect of CYP51A and CYP51B of Colletotrichum spp. on DMI sensitivity, suggesting that using a mixture of DMIs may improve the efficacy for anthracnose management.


Assuntos
Colletotrichum , Fungicidas Industriais , Desmetilação , Farmacorresistência Fúngica , Doenças das Plantas , Esterol 14-Desmetilase , Esteróis
7.
Plant Dis ; 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32990519

RESUMO

In October 2017, we collected five soil samples from each of several fields with a history of severe corn (Zea mays) seedling disease in Heilongjiang province of China. Affected seedlings were wilted with severe root rot, and a high incidence of seedling death was observed in the fields. Corn seeds were seeded in the collected soil samples and grown in a growth chamber for 21 days set at the following incubation temperatures: 21℃/7℃ for 6 days, 10℃/3℃ for 4 days, 16℃/7℃ for 5 days, 20℃/20℃ for 6 days (16 h/8 h, light/dark) (Tang et al. 2019). The corn seedlings in the growth chamber showed the same symptoms observed in the field as mentioned above. Corn root rot samples were collected from several symptomatic plants in the growth chamber to isolate the possible pathogen. Symptomatic roots were washed in 0.5% NaOCl for 2 min, rinsed in sterile water and cut into 1-2 mm segments and then plated on corn meal agar amended with pimaricin (5 µg/ml), ampicillin (250 µg/ml), rifampicin (10 µg/ml), pentachloronitrobenzene (50 µg/ml), and benomyl (10 µg/ml) (PARP+B), which is selective for oomycetes (Jeffers and Martin 1986). After 3 days of incubation in the dark at 25℃, colonies were transferred to 10% V8 juice agar and incubated at 25℃ for 2 weeks. Six isolates were identified as Pythium torulosum based on the morphology of sexual and asexual structures following van der Plaats-Niterink's key (van der Plaats-Niterink 1981). On 10% V8 juice agar, the hypha were aseptate and colonies had filamentous sporangia with a dendroid or globose structure. The oogonia were globose or subglobose, laevis, terminal, rarely intercalary, ranging from 12-19 (average 16) µm. Antheridia were mostly sessile or brachypodous, and each oogonium was supplied by 1-2 antheridia cells. Oospores were globose, plerotic, ranging from 9-16 (average 13) µm. For the molecular identification, two molecular targets, the internal transcribed spacer (ITS) region of ribosomal DNA and cytochrome c oxidase subunit II (CoII), were amplified and sequenced using universal primer sets DC6/ITS4 (Cooke et al. 2000) and FM58/FM66 (Villa et al. 2006), respectively for one isolate, "copt". BLAST analyses of a 971 bp ITS segment amplified from copt (GenBank Accession No. MT830918) showed 99.79% identity with a P. torulosum isolate (GenBank Accession No. AY598624.2). For the COⅡ gene of copt, BLAST analyses of a 553 bp segment (GenBank Accession MT843570) showed 98.37% identity with P. torulosum isolate (GenBank Accession No. AB095065.1). Thus, the isolate, copt, was identified as P. torulosum based on morphological characteristics and molecular analysis. To confirm pathogenicity and Koch's postulates, a pathogenicity test was conducted as described by Zhang et al. (2000). Briefly, a 5 mm culture plug from the P. torulosum isolate, copt, was transferred to a 9-cm petri dish containing 20mL 10% V8 juice agar and incubated in the dark at 25℃ for 7 days. The culture was cut into small pieces and mixed with a sterilized soil mix (40% organic peat substrate, 40% perlite, and 20% soil) at a ratio of one petri dish per 100 g soil mix. Ten corn seeds were planted at a depth of 2 cm in a 500-mL pot containing the inoculated soil mix. The control pots were mock inoculated with plain 10% V8 juice agar. Pots were incubated in a greenhouse at temperatures ranging from 21 to 23℃. There were four replications. After 14 days, corn roots brown and rotted were observed, which was similar to those observed in the field and growth chamber. Control plants remained symptomless and healthy. P. torulosum copt was consistently re-isolated from the symptomatic roots. To our knowledge, this is the first report of P. torulosum causing root rot of corn in Northeastern China. Corn is an important crop in Heilongjiang and the occurrence of root rot caused by this pathogen may be a new threat to corn plants. There is a need to develop management measures to control the disease.

8.
Plant Dis ; 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32779540

RESUMO

As one of the most planted crops worldwide, corn has continuously increased in importance in China over the last decade. But in recent years, poor stands of corn seedlings have occurred frequently in northeastern China, causing significant economic loss. Mature plants were stunted, the roots were necrotic, and some plants collapsed. We collected soil samples from 5 fields with a history of poor stands of corn seedlings in the Heilongjiang province of China in October 2017. After being planted in the collected soil for 12 days, corn seedlings were uprooted. The pathogen was then isolated as described by Tang et al. (2019). Briefly, the rotted roots were washed in 0.5% NaOCl for 2 min, rinsed in sterile water, and then cut into 1-2 mm segments and placed on cornmeal agar amended with pimaricin (5 µg/ml), ampicillin (250 µg/ml), rifampicin (10 µg/ml), pentachloronitrobenzene (50 µg/ml), and benomyl (10 µg/ml) (PARP+B), which is selective for oomycetes (Jeffers and Martin 1986). After 3 days of incubation in the dark at 25℃, colonies were transferred to 10% V8 juice agar or potato dextrose agar (PDA) and grown for 7 days at 25℃. Based on morphological characteristics, one putative isolate (COPS) was identified as P. sylvaticum (Campbell and Hendrix 1967). On PDA, the culture (COPS) produced creamy white and floccus mycelium. P. sylvaticum (COPS) produced hyphal swellings, but no oogonia or zoospore. Hyphal swellings were globose, terminal, or intercalary, ranging from 12.22-18.55 µm diam. Sequence analysis was performed with the cytochrome c oxidase subunit Ⅱ (COⅡ) gene amplified with primers FM35/FM52 (Martin 2000) and the rDNA ITS amplified with primers DC6/ITS4 (Cooke et al. 2000). For COⅡ gene, BLAST analyses of the 773 bp segments showed 97.93% identity with P. sylvaticum isolate (GenBank Accession No. GU222164.1). For the ITS, BLAST analyses of the 880 bp segments showed 99.89% identity with P. sylvaticum isolate (GenBank Accession No. KY084736.1). Both sequences were submitted to GenBank with accession numbers MK648400 and MK606071 for COⅡ and ITS, respectively. For pathogenicity tests, similar to that described by Ling et al. (2018), four 9-cm petri plates containing 20 mL of 10% V8 juice agar were inoculated with an agar plug (5 mm diam) obtained from a 7-day-old P. sylvaticum culture (COPS) grown on 10% V8 juice agar and then incubated at 25℃ in the dark for 7 days. Nine corn seeds were placed on each plate, after which the plates were filled with 50 g sterilized organic peat substrate. For the controls, seeds were placed on non-inoculated plates of 10% V8 juice agar and filled with 50 g sterilized organic peat substrate. Four replications were inoculated. Plates were maintained in a greenhouse at 23℃. After 14 days, similar symptoms as to those observed in the field were present in the greenhouse, whereas control plants remained symptomless. P. sylvaticum (COPS) was re-isolated from diseased roots as described above, thus confirming Koch's postulates. To our knowledge, this is the first report of P. sylvaticum on corn in China. This pathogen may pose a risk to corn production. The identification of the pathogen will help to develop effective strategies to control the disease.

9.
Phytopathology ; 108(11): 1263-1275, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29792573

RESUMO

Anthracnose disease, caused by Colletotrichum truncatum, affects marketable yield during preharvest production and postharvest storage of fruits and vegetables worldwide. Demethylation inhibitor (DMI) fungicides are among the very few chemical classes of single-site mode of action fungicides that are effective in controlling anthracnose disease. However, some species are inherently resistant to DMIs and more information is needed to understand this phenomenon. Isolates of C. truncatum were collected from the United States and China from peach, soybean, citrus, and begonia and sensitivity to six DMIs (difenoconazole, propiconazole, metconazole, tebuconazole, flutriafol, and fenbuconazole) was determined. Compared with DMI sensitive isolates of C. fructicola, C. siamense, and C. fioriniae (EC50 value ranging from 0.03 to 16.2 µg/ml to six DMIs), C. truncatum and C. nymphaeae were resistant to flutriafol and fenbuconazole (with EC50 values of more 50 µg/ml). Moreover, C. truncatum was resistant to tebuconazole and metconazole (with resistance factors of 27.4 and 96.0) and displayed reduced sensitivity to difenoconazole and propiconazole (with resistance factors of 5.1 and 5.2). Analysis of the Colletotrichum spp. genome revealed two potential DMI targets, CYP51A and CYP51B, that putatively encode P450 sterol 14α-demethylases. Both genes were identified and sequenced from C. truncatum and other species and no correlation between CYP51 gene expression levels and fungicide sensitivity was found. Four amino acid variations L208Y, H238R, S302A, and I366L in CYP51A, and three variations H373 N, M376L, and S511T in CYP51B correlated with the DMI resistance phenotype. CYP51A structure model analysis suggested the four alterations may reduce azole affinity. Likewise, CYP51B structure analysis suggested the H373 N and M376L variants may change the conformation of the DMI binding pocket, thereby causing differential sensitivity to DMI fungicides in C. truncatum.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Colletotrichum/enzimologia , Farmacorresistência Fúngica , Variação Genética , Doenças das Plantas/microbiologia , Esterol 14-Desmetilase/genética , Sequência de Aminoácidos , Azóis/farmacologia , Begoniaceae/microbiologia , Citrus/microbiologia , Colletotrichum/efeitos dos fármacos , Colletotrichum/genética , Proteínas Fúngicas/genética , Fungicidas Industriais/farmacologia , Modelos Moleculares , Filogenia , Prunus persica/microbiologia , Alinhamento de Sequência , Glycine max/microbiologia
10.
BMC Genomics ; 18(1): 20, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056803

RESUMO

BACKGROUND: The Asian corn borer (ACB), Ostrinia furnacalis (Guenée), has become the most damaging insect pest of corn in Asia. However, the lack of genome or transcriptome information heavily hinders our further understanding of ACB in every aspect at a molecular level and on a genome-wide scale. Here, we used the Ion Torrent Personal Genome Machine (PGM) Sequencer to explore the ACB transcriptome and to identify relevant genes in response to flubendiamide, showing high selective activity against ACB. RESULTS: We obtained 35,430 unigenes, with an average length of 716 bp, representing a dramatic expansion of existing cDNA sequences available for ACB. These sequences were annotated with Non-redundant Protein (Nr), Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to better understand their functions. A total of 31 cytochrome P450 monooxygenases (P450s), 27 carboxyl/cholinesterases (CCEs) and 19 glutathione S-transferases (GSTs) were manually curated to construct phylogenetic trees, and 25 unigenes encoding target proteins (acetylcholinesterase, nicotinic acetylcholine receptor, gamma-aminobutyric acid receptor, glutamate-gated chloride channel, voltage-gated sodium channel and ryanodine receptor) were identified. In addition, we compared and validated the differentially expressed unigenes upon flubendiamide treatment, revealing that the genes for detoxification enzymes (P450s and esterase), calcium signaling pathways and muscle control pathways (twitchin and tropomyosin), immunoglobulin (hemolin), chemosensory protein and heat shock protein 70 were significantly overexpressed in response to flubendiamide, while the genes for cuticular protein, protease and oxidoreductase showed much lower expression levels. CONCLUSION: The obtained transcriptome information provides large genomic resources available for further studies of ACB. The differentially expressed gene data will elucidate the molecular mechanisms of ACB in response to the novel diamide insecticide, flubendiamide. In particular, these findings will facilitate the identification of the genes involved in insecticide resistance and the development of new compounds to control the ACB.


Assuntos
Benzamidas/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Insetos/efeitos dos fármacos , Insetos/genética , Sulfonas/farmacologia , Transcriptoma , Zea mays/parasitologia , Animais , Biologia Computacional/métodos , Regulação Enzimológica da Expressão Gênica , Biblioteca Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Inativação Metabólica/genética , Insetos/classificação , Insetos/metabolismo , Inseticidas/farmacologia , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Filogenia , Reprodutibilidade dos Testes
12.
Bioorg Med Chem Lett ; 26(10): 2544-2546, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27061156

RESUMO

To find a new lead compound with high biological activity, a series of N-substituted benzoyl-1,2,3,4-tetrahydroquinolyl-1-carboxamide were designed using linking active substructures method. The target compounds were synthesized from substituted benzoic acid by four steps and their structures were confirmed by (1)H NMR, IR spectrum and elemental analysis. The in vitro bioassay results indicated that some target compounds exhibited excellent fungicidal activities, and the position of the substituents played an important role in fungicidal activities. Especially, compound 5n, exhibited better fungicidal activities than the commercial fungicide flutolanil against two tested fungi Valsa mali and Sclerotinia sclerotiorum, with EC50 values of 3.44 and 2.63mg/L, respectively. And it also displayed good in vivo fungicidal activity against S. sclerotiorum with the EC50 value of 29.52mg/L.


Assuntos
Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Ascomicetos/efeitos dos fármacos , Técnicas de Química Sintética , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Fungicidas Industriais/síntese química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectrofotometria Infravermelho , Relação Estrutura-Atividade
13.
Pestic Biochem Physiol ; 132: 96-101, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27521919

RESUMO

Imidacloprid is a nicotinic acetylcholine receptor (nAChR) agonist with potent insecticidal activity. However, resistance to imidacloprid is a significant threat and has been identified in several pest species. Cycloxaprid with cis-configuration is a novel neonicotinoid insecticide, which shows high activity against imidacloprid-resistant pests. The LC50 of imidacloprid against the resistant Aphis gossypii was 14.33mgL(-1) while it was only 0.70mgL(-1) for the susceptible population, giving a resistance ratio of 20.47. In this imidacloprid-resistant population, a point mutation (R81T) located in the loop D region of the nAChR ß1 subunit was found out. But this point mutation did not decrease the activity of cycloxaprid against A. gossypii. The LC50 of cycloxaprid was 1.05 and 1.36mgL(-1) for the imidacloprid-susceptible and imidacloprid-resistant populations, respectively. In addition, cycloxaprid provided better efficacies against resistant A. gossypii than imidacloprid in the fields. Although cycloxaprid was highly toxic to A. gossypii, it showed high selective activity between A. gossypii and its predominant natural enemies, Harmonia axyridis and Chrysoperla sinica. These results demonstrate that cycloxaprid is a promising insecticide against imidacloprid-resistant A. gossypii and suitable for the integrated pest management.


Assuntos
Afídeos , Compostos Heterocíclicos com 3 Anéis , Inseticidas , Piridinas , Animais , Gossypium/parasitologia , Imidazóis , Controle de Insetos/métodos , Resistência a Inseticidas , Neonicotinoides , Nitrocompostos
15.
Pestic Biochem Physiol ; 123: 56-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26267053

RESUMO

Chlorantraniliprole is a novel diamide insecticide that targets the insect ryanodine receptor, a Ca(2+) release channel. Spodoptera exigua is a significant insect pest, and chlorantraniliprole is the most popular diamide insecticide used against this pest. To better understand the effects of diamides on RyR expression and [Ca(2+)], we isolated the SeRyR cDNA and investigated changes in SeRyR expression as a result of the application of chlorantraniliprole. The full-length cDNAs of SeRyR contain an open reading frame (ORF) of 15,357 bp with a predicted protein consisting of 5118 amino acids. SeRyR shares 77-92% identity with other insect RyR isoforms and 45-47% identity with vertebrate RyR isoforms. Furthermore, the relative expression abundances of RyR mRNA extracted from S. exigua fat body cells after 24 h of culture in 0.1, 1, 10, 100 nM, 1 µM and 100 µM of chlorantraniliprole changed 1.04-, 0.89-, 1.83-, 2.58-, 4.03- and 3.12-fold compared to blank control, respectively. The regression equation for the relative expression levels of SeRyR after 24 h as a function of the chlorantraniliprole concentration was Y = 0.6455 + 0.8188LgX, R(2) = 0.97093 for the cell line IOZCAS-Spex-II. These results outline the effects of chlorantraniliprole on the expression of SeRyR and provide a basis for the discovery of a compound that may exhibit selective insect activity.


Assuntos
Proteínas de Insetos/genética , Inseticidas/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Spodoptera/metabolismo , ortoaminobenzoatos/farmacologia , Animais , Proteínas de Insetos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Spodoptera/genética , Regulação para Cima/efeitos dos fármacos
16.
Int J Biol Macromol ; 273(Pt 1): 133080, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866284

RESUMO

In the intricate web of ecological relationships, pollinators such as the Italian honeybee (Apis mellifera) play a crucial role in maintaining biodiversity and agricultural productivity. This study focuses on the interactions between three neonicotinoid compounds and the honeybee's chemosensory protein 3 (CSP3), a key player in their olfactory system. Employing advanced spectroscopic techniques and molecular modeling, we explore the binding dynamics and conformational changes in CSP3 upon exposure to these pesticides. The research reveals that all three neonicotinoids considerably quench CSP3's fluorescence through a dynamic and static mixing mechanism, indicating a strong binding affinity, predominantly driven by hydrophobic interactions. UV-visible absorption, synchronous fluorescence, and 3D fluorescence spectra support slight changes in the microenvironment around the aromatic amino acids of CSP3. Circular dichroism spectra indicate a reduction in CSP3's α-helix content, suggesting structural alterations. Molecular docking and dynamics simulations further elucidate the binding modes and stability of these interactions, highlighting the role of specific amino acids in CSP3's binding cavity. Findings provide critical insights into molecular mechanisms by which neonicotinoids may impair honeybee chemosensory function, offering implications for designing safer pesticides and understanding the broader ecological impact of these chemicals on pollinator health.


Assuntos
Proteínas de Insetos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neonicotinoides , Animais , Abelhas/efeitos dos fármacos , Abelhas/química , Neonicotinoides/química , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Modelos Moleculares , Espectrometria de Fluorescência , Análise Espectral , Dicroísmo Circular
17.
J Adv Res ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245339

RESUMO

INTRODUCTION: Diaphorina citri is the most serious pest of citrus worldwide because it is the natural insect vector of huanglongbing. Cycloxaprid (Cyc) was highly toxic to D. citri. However, the poor solubility and stability had limited its development. OBJECTIVES: In order to improve the insecticidal effect and stability to harsh climatic conditions of Cyc. METHODS: Cyc was chosen as the representative pesticide, 4,4'-methylenebis (phenyl isocyanate), PEG-600 and n-butanol were used to prepare sustained-release nano-gelation particles (Cyc@NGs). RESULTS: Cyc@NGs enhance the toxicity of Cyc more than 3 folds. Furthermore, Cyc@NGs showed excellent anti-rain and anti-UV capacity. After being exposed to ultraviolet light for 12 h, Cyc decreased by 100 %, while the insecticide content of Cyc@NGs only decreased by 25 %. Additionally, Cyc@NGs possessed better wettability on citrus leaves, mainly benefitting from its lower contact angle on citrus leaves. Moreover, FITC-labeled nano-gelation particles (FITC-NGs) exhibited high capability to penetrate and enrich in citrus leaf tissue and D. citri midgut. Consequently, NGs promoted the translocation and durability of insecticides, thereby, increasing the insecticidal activity. The results suggested that nano-gelation particle is a promising platform to deliver insecticides and Cyc@NGs would be the suitable candidate for the effective management of D. citri.

18.
Pest Manag Sci ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007292

RESUMO

BACKGROUND: Unmanned aerial vehicles (UAVs) for pesticide application show promising potential in tobacco pest management. However, the impact of flight parameters on spray efficacy requires further investigation. Three field experiments were conducted from the rosette to the maturation stage of tobacco to systematically assess spray efficacy under varying flight heights, speeds, and application volumes. Using a multi-index weight analysis method, optimal operational parameter combinations for different tobacco growth stages were evaluated and compared with backpack electric sprayers. RESULTS: For the rosette stage, the recommended parameter is a flight speed of 5 m s-1, a flight height of 2 m, and a liquid application volume of 30 L hm-2; during the vigorous growth stage, the suggested parameter includes a flight speed of 3 m s-1, a flight height of 2 m, and a liquid application volume of 22.5 L hm-2. In the maturing stage, optimal parameter consists of a flight speed of 3 m s-1, a flight height of 3.5 m, and a liquid application volume of 30 L hm-2. Furthermore, UAV spraying achieves higher droplet deposition on both sides of tobacco leaves compared to traditional electric backpack sprayers. CONCLUSIONS: Adjusting UAV spraying parameters for different tobacco growth stages is crucial. These results can provide the methods for the precise control technology of tobacco pests at different growth stages. © 2024 Society of Chemical Industry.

19.
J Agric Food Chem ; 71(18): 6830-6837, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37097808

RESUMO

The plant root is a key pathway to absorb insecticides from soil and is colonized by beneficial and pathogenic microbial communities. Our study demonstrated that colonizing roots by nitrogen-fixing bacterium Pseudomonas stutzeri and pathogenic Fusarium graminearum and Pythium ultimum increased the uptake of insecticides into maize roots from soil. An alteration in the permeability of root cells contributed to this increased uptake. For the subsequent root-to-shoot translocation, the relationship between translocation and log P of the compound satisfied a Gaussian distribution. Relatively beneficial P. stutzeri can promote maize seedling growth and increase translocation, whereas Fusarium and Pythium pathogens can retard the seedling growth and reduce the translocation. Furthermore, the relationship between the concentration difference (difference of an insecticide from inoculation treatment to control) and log P also showed a Gaussian distribution. The maximum concentration difference from the Gaussian equation can be applied to assess the capacity of rhizosphere microorganisms to influence translocation.


Assuntos
Inseticidas , Rizosfera , Plântula/microbiologia , Zea mays/microbiologia , Raízes de Plantas/microbiologia , Solo , Compostos Orgânicos , Microbiologia do Solo
20.
Pest Manag Sci ; 79(1): 464-473, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36209490

RESUMO

BACKGROUND: Fall armyworm (Spodoptera frugiperda) is one of the major invasive pests in China, and has been widely controlled by labor-intensive foliar sprays of agrochemicals in maize (Zea mays L.). RESULTS: Systemic bioassay showed that mixtures of chlorantraniliprole (Chlor) and carbaryl (Carb) had dramatically synergistic effect on toxicity to S. frugiperda. Particularly, a mixture of Chlor with Carb at a mass ratio of 2:1 (MCC) exhibited the highest toxicity to S. frugiperda. Therefore, seed treatment of Chlor mixed with Carb was studied as a simple, accurate, efficient and low-cost control technology. Our results showed that MCC treatment shortened the median lethal time and 90% lethal time to S. frugiperda compared to Chlor- and Carb-alone treatments. Meanwhile, smaller leaf consumption by S. frugiperda was recorded under MCC treatment compared to Chlor- and Carb-alone treatments. In field trial, maize-seed treatment with MCC showed efficacy up to 39 days post-emergence in preventing S. frugiperda foliar damage at a low infestation pressure. Moreover, chemical quantification by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) showed that Chlor residues were more absorbed and concentrated in maize leaves of MCC treatment, compared to that of Chlor-alone treatment. CONCLUSION: These results suggested that seed treatment with MCC can be applied to increase the control efficacy and reduce the cost of Chlor-alone treatment for controlling S. frugiperda. The present study provided evidence of an enhanced translocation and accumulation of Chlor residues in maize leaves under MCC treatment, which likely contributed to a synergistic effect against S. frugiperda. © 2022 Society of Chemical Industry.


Assuntos
Carbaril , Zea mays , Carbaril/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA