Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 246: 125687, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406902

RESUMO

To develop a greener and more efficient method for producing cellulose nanofibers (CNFs) from raw plants, an AlCl3-enhanced ternary deep eutectic solvent, DES2 (consisting of choline chloride, citric acid, and AlCl3·6H2O in a molar ratio of 1:0.4:0.08), was synthesized. Raw elephant grass (EG) was pretreated with DES2, followed by sodium chlorite (NaClO2) bleaching and ultrasonic disruption to extract high-performance CNFs. The DES2 and NaClO2 treatments effectively removed hemicellulose and lignin, achieving removal rates of 99.23 % and 99.62 %, respectively, while maintaining a cellulose content of 78.3 %. DES2 demonstrated easy recyclability and maintained excellent biomass pretreatment performance even after multiple cycles. Following a brief 30-min intermittent ultrasound treatment, the resulting CNFs demonstrated superior crystallinity, increased carboxyl content, and a narrower width distribution compared to CNFs obtained from AlCl3-free DES1. Optimized conditions at 110 °C yielded CNFs with 85.3 % crystallinity, 0.64 mmol/g carboxyl content, 5.15 nm width distribution, and excellent dispersion in water for at least six months. Additionally, CNFs enhanced the tensile strength of chia seed mucilage (CM) composite films, showing a significant improvement to 26.6 MPa, representing a 231.3 % increase over the control film. This study offers a promising approach for efficiently producing CNFs from raw plants.


Assuntos
Celulose , Nanofibras , Solventes , Cloreto de Alumínio , Solventes Eutéticos Profundos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA