RESUMO
BACKGROUND: Cotton is an important economic crop and a host of Liriomyza sativae. Pectin methylesterase (PME)-mediated pectin metabolism plays an indispensable role in multiple biological processes in planta. However, the pleiotropic functions of PME often lead to unpredictable effects on crop resistance to pests. Additionally, whether and how PME affects susceptibility to Liriomyza sativae remain unclear. RESULTS: Here, we isolated GhPME36, which is located in the cell wall, from upland cotton (Gossypium hirsutum L.). Interestingly, the overexpression of GhPME36 in cotton caused severe susceptibility to Liriomyza sativae but increased leaf biomass in Arabidopsis. Cytological observations revealed that the cell wall was thinner with more demethylesterified pectins in GhPME36-OE cotton leaves than in WT leaves, whereas the soluble sugar content of GhPME36-OE cotton leaf cell walls was accordingly higher; both factors attracted Liriomyza sativae to feed on GhPME36-OE cotton leaves. Metabolomic analysis demonstrated that glucose was significantly differentially accumulated. Transcriptomic analysis further revealed DEGs enriched in glucose metabolic pathways when GhPME36 was overexpressed, suggesting that GhPME36 aggravates susceptibility to Liriomyza sativae by affecting both the structure and components of cell wall biosynthesis. Moreover, GhPME36 interacts with another pectin-modifying enzyme, GhC/VIF1, to maintain the dynamic stability of pectin methyl esterification. CONCLUSIONS: Taken together, our results reveal the cytological and molecular mechanisms by which GhPME36 aggravates susceptibility to Liriomyza sativae. This study broadens the knowledge of PME function and provides new insights into plant resistance to pests and the safety of genetically modified plants.
Assuntos
Parede Celular , Gossypium , Folhas de Planta , Proteínas de Plantas , Gossypium/genética , Parede Celular/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Animais , Ascomicetos/fisiologia , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Doenças das Plantas/parasitologia , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Plantas Geneticamente Modificadas/genéticaRESUMO
Sulfate transporter (SULTR) proteins are in charge of the transport and absorption on sulfate substances, and have been reported to play vital roles in the biological processes of plant growth and stress response. However, there were few reports of genome-wide identification and expression-pattern analysis of SULTRs in Hibiscus mutabilis. Gossypium genus is a ideal model for studying the allopolyploidy, therefore two diploid species (G. raimondii and G. arboreum) and two tetraploid species (G. hirsutum and G. barbadense) were chosen in this study to perform bioinformatic analyses, identifying 18, 18, 35, and 35 SULTR members, respectively. All the 106 cotton SULTR genes were utilized to construct the phylogenetic tree together with 11 Arabidopsis thaliana, 13 Oryza sativa, and 8 Zea mays ones, which was divided into Group1-Group4. The clustering analyses of gene structures and 10 conserved motifs among the cotton SULTR genes showed the consistent evolutionary relationship with the phylogenetic tree, and the results of gene-duplication identification among the four representative Gossypium species indicated that genome-wide or segment duplication might make main contributions to the expansion of SULTR gene family in cotton. Having conducted the cis-regulatory element analysis in promoter region, we noticed that the existing salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) elements could have influences with expression levels of cotton SULTR genes. The expression patterns of GhSULTR genes were also investigated on the 7 different tissues or organs and the developing ovules and fibers, most of which were highly expressed in root, stem, sepal, receptacel, ovule at 10 DPA, and fiber at 20 and 25 DPA. In addition, more active regulatory were observed in GhSULTR genes responding to multiple abiotic stresses, and 12 highly expressed genes showed the similar expression patterns in the quantitative Real-time PCR experiments under cold, heat, salt, and drought treatments. These findings broaden our insight into the evolutionary relationships and expression patterns of the SULTR gene family in cotton, and provide the valuable information for further screening the vital candidate genes on trait improvement.
Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Genoma de Planta , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismoRESUMO
BACKGROUND: Epidermal patterning factor / -like (EPF/EPFL) gene family encodes a class of cysteine-rich secretory peptides, which are widelyfound in terrestrial plants.Multiple studies has indicated that EPF/EPFLs might play significant roles in coordinating plant development and growth, especially as the morphogenesis processes of stoma, awn, stamen, and fruit skin. However, few research on EPF/EPFL gene family was reported in Gossypium. RESULTS: We separately identified 20 G. raimondii, 24 G. arboreum, 44 G. hirsutum, and 44 G. barbadense EPF/EPFL genes in the 4 representative cotton species, which were divided into four clades together with 11 Arabidopsis thaliana, 13 Oryza sativa, and 17 Selaginella moellendorffii ones based on their evolutionary relationships. The similar gene structure and common motifs indicated the high conservation among the EPF/EPFL members, while the uneven distribution in chromosomes implied the variability during the long-term evolutionary process. Hundreds of collinearity relationships were identified from the pairwise comparisons of intraspecifc and interspecific genomes, which illustrated gene duplication might contribute to the expansion of cotton EPF/EPFL gene family. A total of 15 kinds of cis-regulatory elements were predicted in the promoter regions, and divided into three major categories relevant to the biological processes of development and growth, plant hormone response, and abiotic stress response. Having performing the expression pattern analyses with the basic of the published RNA-seq data, we found most of GhEPF/EPFL and GbEPF/EPFL genes presented the relatively low expression levels among the 9 tissues or organs, while showed more dramatically different responses to high/low temperature and salt or drought stresses. Combined with transcriptome data of developing ovules and fibers and quantitative Real-time PCR results (qRT-PCR) of 15 highly expressed GhEPF/EPFL genes, it could be deduced that the cotton EPF/EPFL genes were closely related with fiber development. Additionally, the networks of protein-protein interacting among EPF/EPFLs concentrated on the cores of GhEPF1 and GhEPF7, and thosefunctional enrichment analyses indicated that most of EPF/EPFLs participate in the GO (Gene Ontology) terms of stomatal development and plant epidermis development, and the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways of DNA or base excision repair. CONCLUSION: Totally, 132 EPF/EPFL genes were identified for the first time in cotton, whose bioinformatic analyses of cis-regulatory elements and expression patterns combined with qRT-PCR experiments to prove the potential functions in the biological processes of plant growth and responding to abiotic stresses, specifically in the fiber development. These results not only provide comprehensive and valuable information for cotton EPF/EPFL gene family, but also lay solid foundation for screening candidate EPF/EPFL genes in further cotton breeding.
Assuntos
Gossypium , Família Multigênica , Proteínas de Plantas , Gossypium/genética , Gossypium/metabolismo , Gossypium/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genes de Plantas , Estudo de Associação Genômica Ampla , Perfilação da Expressão Gênica , Mapas de Interação de ProteínasRESUMO
BACKGROUND: Upland cotton (Gossypium hirsutum L.) is the most economically important species in the cotton genus (Gossypium spp.). Enhancing the cotton yield is a major goal in cotton breeding programs. Lint percentage (LP) and boll weight (BW) are the two most important components of cotton lint yield. The identification of stable and effective quantitative trait loci (QTLs) will aid the molecular breeding of cotton cultivars with high yield. RESULTS: Genotyping by target sequencing (GBTS) and genome-wide association study (GWAS) with 3VmrMLM were used to identify LP and BW related QTLs from two recombinant inbred line (RIL) populations derived from high lint yield and fiber quality lines (ZR014121, CCRI60 and EZ60). The average call rate of a single locus was 94.35%, and the average call rate of an individual was 92.10% in GBTS. A total of 100 QTLs were identified; 22 of them were overlapping with the reported QTLs, and 78 were novel QTLs. Of the 100 QTLs, 51 QTLs were for LP, and they explained 0.29-9.96% of the phenotypic variation; 49 QTLs were for BW, and they explained 0.41-6.31% of the phenotypic variation. One QTL (qBW-E-A10-1, qBW-C-A10-1) was identified in both populations. Six key QTLs were identified in multiple-environments; three were for LP, and three were for BW. A total of 108 candidate genes were identified in the regions of the six key QTLs. Several candidate genes were positively related to the developments of LP and BW, such as genes involved in gene transcription, protein synthesis, calcium signaling, carbon metabolism, and biosynthesis of secondary metabolites. Seven major candidate genes were predicted to form a co-expression network. Six significantly highly expressed candidate genes of the six QTLs after anthesis were the key genes regulating LP and BW and affecting cotton yield formation. CONCLUSIONS: A total of 100 stable QTLs for LP and BW in upland cotton were identified in this study; these QTLs could be used in cotton molecular breeding programs. Putative candidate genes of the six key QTLs were identified; this result provided clues for future studies on the mechanisms of LP and BW developments.
Assuntos
Gossypium , Mapeamento Cromossômico , Fibra de Algodão , Estudo de Associação Genômica Ampla , Gossypium/genética , Fenótipo , Melhoramento Vegetal , Locos de Características QuantitativasRESUMO
In plants, long noncoding RNAs (lncRNAs) regulate disease resistance against fungi and other pathogens. However, the specific mechanism behind this regulation remains unclear. In this study, we identified disease resistance-related lncRNAs as well as their regulating genes and assessed their functions by infection of cotton (Gossypium) chromosome segment substitution lines with Verticillium dahliae. Our results demonstrated that lncRNA7 and its regulating gene Pectin methylesterase inhibitor 13 (GbPMEI13) positively regulated disease resistance via the silencing approach, while ectopic overexpression of GbPMEI13 in Arabidopsis (Arabidopsis thaliana) promoted growth and enhanced resistance to V. dahliae. In contrast, lncRNA2 and its regulating gene Polygalacturonase 12 (GbPG12) negatively regulated resistance to V. dahliae. We further found that fungal disease-related agents, including the pectin-derived oligogalacturonide (OG), could downregulate the expression of lncRNA2 and GbPG12, leading to pectin accumulation. Conversely, OG upregulated the expression of lncRNA7, which encodes a plant peptide phytosulfokine (PSK-α), which was confirmed by lncRNA7 overexpression and Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS) experiments. We showed that PSK-α promoted 3-Indoleacetic acid (IAA) accumulation and activated GbPMEI13 expression through Auxin Response Factor 5. Since it is an inhibitor of pectin methylesterase (PME), GbPMEI13 promotes pectin methylation and therefore increases the resistance to V. dahliae. Consistently, we also demonstrated that GbPMEI13 inhibits the mycelial growth and spore germination of V. dahliae in vitro. In this study, we demonstrated that lncRNA7, lncRNA2, and their regulating genes modulate cell wall defense against V. dahliae via auxin-mediated signaling, providing a strategy for cotton breeding.
Assuntos
Arabidopsis , RNA Longo não Codificante , Verticillium , Arabidopsis/metabolismo , Parede Celular/metabolismo , Cromatografia Líquida , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Ácidos Indolacéticos/metabolismo , Pectinas/metabolismo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Espectrometria de Massas em Tandem , Verticillium/fisiologiaRESUMO
KEY MESSAGE: The fiber length-related qFL-A12-5 identified in CSSLs introgressed from Gossypium barbadense into Gossypium hirsutum was fine-mapped to an 18.8 kb region on chromosome A12, leading to the identification of the GhTPR gene as a potential regulator of cotton fiber length. Fiber length is a key determinant of fiber quality in cotton, and it is a key target of artificial selection for breeding and domestication. Although many fiber length-related quantitative trait loci have been identified, there are few reports on their fine mapping or candidate gene validation, thus hampering efforts to understand the mechanistic basis of cotton fiber development. Our previous study identified the qFL-A12-5 associated with superior fiber quality on chromosome A12 in the chromosome segment substitution line (CSSL) MBI7747 (BC4F3:5). A single segment substitution line (CSSL-106) screened from BC6F2 was backcrossed to construct a larger segregation population with its recurrent parent CCRI45, thus enabling the fine mapping of 2852 BC7F2 individuals using denser simple sequence repeat markers to narrow the qFL-A12-5 to an 18.8 kb region of the genome, in which six annotated genes were identified in Gossypium hirsutum. Quantitative real-time PCR and comparative analyses led to the identification of GH_A12G2192 (GhTPR) encoding a tetratricopeptide repeat-like superfamily protein as a promising candidate gene for qFL-A12-5. A comparative analysis of the protein-coding regions of GhTPR among Hai1, MBI7747, and CCRI45 revealed two non-synonymous mutations. The overexpression of GhTPR resulted in longer roots in Arabidopsis, suggesting that GhTPR may regulate cotton fiber development. These results provide a foundation for future efforts to improve cotton fiber length.
Assuntos
Gossypium , Locos de Características Quantitativas , Humanos , Gossypium/genética , Mapeamento Cromossômico/métodos , Fenótipo , Melhoramento Vegetal , Fibra de Algodão , Estudos de Associação GenéticaRESUMO
Upland cotton is the fifth-largest oil crop in the world, with an average supply of nearly 20% of vegetable oil production. Cottonseed oil is also an ideal alternative raw material to be efficiently converted into biodiesel. However, the improvement in kernel oil content (KOC) of cottonseed has not received sufficient attention from researchers for a long time, due to the fact that the main product of cotton planting is fiber. Previous studies have tagged QTLs and identified individual candidate genes that regulate KOC of cottonseed. The regulatory mechanism of oil metabolism and accumulation of cottonseed are still elusive. In the current study, two high-density genetic maps (HDGMs), which were constructed based on a recombinant inbred line (RIL) population consisting of 231 individuals, were used to identify KOC QTLs. A total of forty-three stable QTLs were detected via these two HDGM strategies. Bioinformatic analysis of all the genes harbored in the marker intervals of the stable QTLs revealed that a total of fifty-one genes were involved in the pathways related to lipid biosynthesis. Functional analysis via coexpression network and RNA-seq revealed that the hub genes in the co-expression network that also catalyze the key steps of fatty acid synthesis, lipid metabolism and oil body formation pathways (ACX4, LACS4, KCR1, and SQD1) could jointly orchestrate oil accumulation in cottonseed. This study will strengthen our understanding of oil metabolism and accumulation in cottonseed and contribute to KOC improvement in cottonseed in the future, enhancing the security and stability of worldwide food supply.
Assuntos
Óleo de Sementes de Algodão , Locos de Características Quantitativas , Humanos , Óleo de Sementes de Algodão/metabolismo , Óleos de Plantas , Gossypium/genética , Gossypium/metabolismo , Fibra de AlgodãoRESUMO
Cotton (Gossypium spp.) is the fifth largest oil crop in the world, and cottonseed provides abundant vegetable oil resources and industrial bioenergy fuels for people; therefore, it is of practical significance to increase the oil content of cotton seeds for improving the oil yield and economic benefits of planting cotton. Long-chain acyl-coenzyme A (CoA) synthetase (LACS) capable of catalyzing the formation of acyl-CoAs from free fatty acids has been proven to significantly participate in lipid metabolism, of which whole-genome identification and functional characterization of the gene family have not yet been comprehensively analyzed in cotton. In this study, a total of sixty-five LACS genes were confirmed in two diploid and two tetraploid Gossypium species, which were divided into six subgroups based on phylogenetic relationships with twenty-one other plants. An analysis of protein motif and genomic organizations displayed structural and functional conservation within the same group but diverged among the different group. Gene duplication relationship analysis illustrates the LACS gene family in large scale expansion through WGDs/segmental duplications. The overall Ka/Ks ratio indicated the intense purifying selection of LACS genes in four cotton species during evolution. The LACS genes promoter elements contain numerous light response cis-elements associated with fatty acids synthesis and catabolism. In addition, the expression of almost all GhLACS genes in high seed oil were higher compared to those in low seed oil. We proposed LACS gene models and shed light on their functional roles in lipid metabolism, demonstrating their engineering potential for modulating TAG synthesis in cotton, and the genetic engineering of cottonseed oil provides a theoretical basis.
Assuntos
Genoma de Planta , Gossypium , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Família Multigênica , Filogenia , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismoRESUMO
Gossypium provides the foremost natural fiber for supporting the rapid development of the textile industry. Quantitative trait locus (QTL) mapping of fiber yield and quality traits is, thus, of great significance for providing a foundation for the genetic improvement of key target traits in cotton production. In this study, a superior chromosome segment substitution line (CSSL), MBI8255, with high yield and premium fiber quality characteristics was cultivated from the BC5F3:5 lineage derived from G. barbadense Hai1 and G. hirsutum CCRI36, and was chosen to construct a segregation population containing 123 F2 individuals with CCRI36. A total of 71 polymorphic SSR (simple sequence repeat) markers were identified based on a previous high-density linkage map, and 17 QTLs distributed on five chromosomes were detected, of which 10 QTLs for cotton yield explained 0.26-15.41% of phenotypic variations, while 7 QTLs for fiber quality explained 0.84-9.38% of phenotypic variations, separately containing four and one stable QTLs detected from over two environments. Among three identified QTL clusters, only the Chr19 QTL cluster harbored two stable and one unstable QTL for three different traits, and hence this significant region, which included 1546 genes, was subjected to functional enrichment and transcriptome expression analyses, ultimately screening eight candidate genes relevant to fiber development. This study not only provides useful information for the further fine-mapping and functional verification of candidate genes, but also offers a solid foundation for revealing the molecular mechanisms of fiber formation.
Assuntos
Fibra de Algodão , Gossypium , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Gossypium/genética , Humanos , Fenótipo , Locos de Características Quantitativas/genéticaRESUMO
KEY MESSAGE: In this study, we present AAQSP as an extension of existing NGS-BSA applications for identifying stable QTLs at high resolution. GhPAP16 and GhIQD14 fine mapped on chromosome D09 of upland cotton are identified as important candidate genes for lint percentage (LP). Bulked segregant analysis combined with next generation sequencing (NGS-BSA) allows rapid identification of genome sequence differences responsible for phenotypic variation. The NGS-BSA approach applied to crops mainly depends on comparing two bulked DNA samples of individuals from an F2 population. Since some F2 individuals still maintain high heterozygosity, heterosis will exert complications in pursuing NGS-BSA in such populations. In addition, the genetic background influences the stability of gene expression in crops, so some QTLs mapped in one segregating population may not be widely applied in crop improvement. The AAQSP (Association Analysis of QTL-seq on Semi-homologous Populations) reported in our study combines the optimized scheme of constructing BSA bulks with NGS-BSA analysis in two (or more) different parental genetic backgrounds for isolating the stable QTLs. With application of AAQSP strategy and construction of a high-density linkage map, we have successfully identified a QTL significantly related to lint percentage (LP) in cultivated upland cotton, followed by map-based cloning to dissect two candidate genes, GhPAP16 and GhIQD14. This study demonstrated that AAQSP can efficiently identify stable QTLs for complex traits of interest, and thus accelerate the genetic improvement of upland cotton and other crop plants.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Locos de Características Quantitativas , Mapeamento Cromossômico , Produtos Agrícolas/genética , Patrimônio Genético , Gossypium/genética , Vigor Híbrido , FenótipoRESUMO
KEY MESSAGE: Based on the integration of QTL-mapping and regulatory network analyses, five high-confidence stable QTL regions, six candidate genes and two microRNAs that potentially affect the cottonseed oil content were discovered. Cottonseed oil is increasingly becoming a promising target for edible oil with its high content of unsaturated fatty acids. In this study, a recombinant inbred line (RIL) cotton population was constructed to detect quantitative trait loci (QTLs) for the cottonseed oil content. A total of 39 QTLs were detected across eight different environments, of which five QTLs were stable. Forty-three candidate genes potentially involved in carbon metabolism, fatty acid synthesis and triacylglycerol biosynthesis processes were further obtained in the stable QTL regions. Transcriptome analysis showed that nineteen of these candidate genes expressed during the developing cottonseed ovules and may affect the cottonseed oil content. Besides, transcription factor (TF) and microRNA (miRNA) co-regulatory network analyses based on the nineteen candidate genes suggested that six genes, two core miRNAs (ghr-miR2949b and ghr-miR2949c), and one TF GhHSL1 were considered to be closely associated with the cottonseed oil content. Moreover, four vital genes were validated by quantitative real-time PCR (qRT-PCR). These results provide insights into the oil accumulation mechanism in developing cottonseed ovules through the construction of a detailed oil accumulation model.
Assuntos
Óleo de Sementes de Algodão , Gossypium , Mapeamento Cromossômico , Óleo de Sementes de Algodão/metabolismo , Gossypium/genética , Gossypium/metabolismo , Locos de Características QuantitativasRESUMO
The present study demonstrated a de novo correlation among fiber quality genes in multiple RIL populations including sGK9708 × 0-153, LMY22 × LY343 and Lumianyan28 × Xinluzao24. The current study was conducted to identify the major common QTLs including fiber length and strength, and to identify the co-expression networks of fiber length and strength QTLs harbored genes to target the hub genes. The RNA-seq data of sGK9708 × 0-153 population highlighted 50 and 48 candidate genes of fiber length and fiber strength QTLs. A total of 29 and 21 hub genes were identified in fiber length and strength co-expression network modules. The absolute values of correlation coefficient close to 1 resulted highly positive correlation among hub genes. Results also suggested that the gene correlation significantly influence the gene expression at different fiber development stages. These results might provide useful reference for further experiments in multiple RIL populations and suggest potential candidate genes for functional studies in cotton.
Assuntos
Fibra de Algodão , Locos de Características Quantitativas , Mapeamento Cromossômico , Gossypium/genética , FenótipoRESUMO
This study aimed to use micro-FTIR with transmission mode to investigate cellulose crystallinity of developing cotton fibers. Compared with ATR-FTIR method, we found that micro-FTIR can obtain more information of cellulose inside of the developing cotton fibers, especially in high wavenumber of 2800-3000 cm-1 region. Combined with curve fitting method, a new IR crystallinity index (CI) method named wax crystallinity index (WCI) was introduced to evaluate the cellulose crystallinity in the development of cotton fibers based on the peak and area ratios of 2900 cm-1/2850 cm-1 and 2900 cm-1/2920 cm-1. The obtained WCI values demonstrated an excellent coefficient of determination with X-ray diffraction (XRD) CI method with the value up to 0.99. This study suggested that micro-FTIR was an effective technique to qualitatively analyze the crystallinity in developing cotton fibers combined with curve fitting method.
Assuntos
Celulose/análise , Fibra de Algodão/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cristalização , Difração de Raios XRESUMO
Fine mapping QTLs and identifying candidate genes for cotton fibre-quality and yield traits would be beneficial to cotton breeding. Here, we constructed a high-density genetic map by specific-locus amplified fragment sequencing (SLAF-seq) to identify QTLs associated with fibre-quality and yield traits using 239 recombinant inbred lines (RILs), which was developed from LMY22 (a high-yield Gossypium hirsutumL. cultivar) × LY343 (a superior fibre-quality germplasm with G. barbadenseL. introgressions). The genetic map spanned 3426.57 cM, including 3556 SLAF-based SNPs and 199 SSR marker loci. A total of 104 QTLs, including 67 QTLs for fibre quality and 37 QTLs for yield traits, were identified with phenotypic data collected from 7 environments. Among these, 66 QTLs were co-located in 19 QTL clusters on 12 chromosomes, and 24 QTLs were detected in three or more environments and determined to be stable. We also investigated the genomic components of LY343 and their contributions to fibre-related traits by deep sequencing the whole genome of LY343, and we found that genomic components from G. hirsutum races (which entered LY343 via its G. barbadense parent) contributed more favourable alleles than those from G. barbadense. We further identified six putative candidate genes for stable QTLs, including Gh_A03G1147 (GhPEL6), Gh_D07G1598 (GhCSLC6) and Gh_D13G1921 (GhTBL5) for fibre-length QTLs and Gh_D03G0919 (GhCOBL4), Gh_D09G1659 (GhMYB4) and Gh_D09G1690 (GhMYB85) for lint-percentage QTLs. Our results provide comprehensive insight into the genetic basis of the formation of fibre-related traits and would be helpful for cloning fibre-development-related genes as well as for marker-assisted genetic improvement in cotton.
Assuntos
Fibra de Algodão , Genes de Plantas , Gossypium/genética , Locos de Características Quantitativas , Alelos , Mapeamento Cromossômico , Endogamia , Fenótipo , Melhoramento VegetalRESUMO
Cotton is widely cultivated globally because it provides natural fibre for the textile industry and human use. To identify quantitative trait loci (QTLs)/genes associated with fibre quality and yield, a recombinant inbred line (RIL) population was developed in upland cotton. A consensus map covering the whole genome was constructed with three types of markers (8295 markers, 5197.17 centimorgans (cM)). Six fibre yield and quality traits were evaluated in 17 environments, and 983 QTLs were identified, 198 of which were stable and mainly distributed on chromosomes 4, 6, 7, 13, 21 and 25. Thirty-seven QTL clusters were identified, in which 92.8% of paired traits with significant medium or high positive correlations had the same QTL additive effect directions, and all of the paired traits with significant medium or high negative correlations had opposite additive effect directions. In total, 1297 genes were discovered in the QTL clusters, 414 of which were expressed in two RNA-Seq data sets. Many genes were discovered, 23 of which were promising candidates. Six important QTL clusters that included both fibre quality and yield traits were identified with opposite additive effect directions, and those on chromosome 13 (qClu-chr13-2) could increase fibre quality but reduce yield; this result was validated in a natural population using three markers. These data could provide information about the genetic basis of cotton fibre quality and yield and help cotton breeders to improve fibre quality and yield simultaneously.
Assuntos
Fibra de Algodão , Gossypium/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Marcadores Genéticos , Fenótipo , Melhoramento Vegetal , RNA-SeqRESUMO
KEY MESSAGE: Background-independent (BI) and stably expressed (SE) quantitative trait loci (QTLs) were identified using two sets of introgression lines across multiple environments. Genetic background more greatly affected fiber quality traits than environmental factors. Sixty-one SE-QTLs, including two BI-QTLs, were novel and 48 SE-QTLs, including seven BI-QTLs, were previously reported. Cotton fiber quality traits are controlled by QTLs and are susceptible to environmental influence. Fiber quality improvement is an essential goal in cotton breeding but is hindered by limited knowledge of the genetic basis of fiber quality traits. In this study, two sets of introgression lines of Gossypium hirsutum × G. barbadense were used to dissect the QTL stability of three fiber quality traits (fiber length, strength and micronaire) across environments using 551 simple sequence repeat markers selected from our high-density genetic map. A total of 76 and 120 QTLs were detected in the CCRI36 and CCRI45 backgrounds, respectively. Nine BI-QTLs were found, and 78 (41.71%) of the detected QTLs were reported previously. Thirty-nine and 79 QTLs were SE-QTLs in at least two environments in the CCRI36 and CCRI45 backgrounds, respectively. Forty-eight SE-QTLs, including seven BI-QTLs, were confirmed in previous reports, and 61 SE-QTLs, including two BI-QTLs, were considered novel. These results indicate that genetic background more strongly impacts on fiber quality traits than environmental factors. Twenty-three clusters with BI- and/or SE-QTLs were identified, 19 of which harbored favorable alleles from G. barbadense for two or three fiber quality traits. This study is the first report using two sets of introgression lines to identify fiber quality QTLs across environments in cotton, providing insights into the effect of genetic backgrounds and environments on the QTL expression of fiber quality and important information for the genetic basis underlying fiber quality traits toward QTL cloning and molecular breeding.
Assuntos
Mapeamento Cromossômico , Fibra de Algodão , Ligação Genética , Gossypium/genética , Locos de Características Quantitativas , Alelos , Cruzamentos Genéticos , Genoma de Planta , Repetições de Microssatélites , Fenótipo , Melhoramento VegetalRESUMO
BACKGROUND: Verticillium wilt (VW), also known as "cotton cancer," is one of the most destructive diseases in global cotton production that seriously impacts fiber yield and quality. Despite numerous attempts, little significant progress has been made in improving the VW resistance of upland cotton. The development of chromosome segment substitution lines (CSSLs) from Gossypium hirsutum × G. barbadense has emerged as a means of simultaneously developing new cotton varieties with high-yield, superior fiber, and resistance to VW. RESULTS: In this study, VW-resistant investigations were first conducted in an artificial greenhouse, a natural field, and diseased nursery conditions, resulting in the identification of one stably VW-resistant CSSL, MBI8255, and one VW-susceptible G. hirsutum, CCRI36, which were subsequently subjected to biochemical tests and transcriptome sequencing during V991 infection (0, 1, and 2 days after inoculation). Eighteen root samples with three replications were collected to perform multiple comparisons of enzyme activity and biochemical substance contents. The findings indicated that VW resistance was positively correlated with peroxidase and polyphenol oxidase activity, but negatively correlated with malondialdehyde content. Additionally, RNA sequencing was used for the same root samples, resulting in a total of 77,412 genes, of which 23,180 differentially expressed genes were identified from multiple comparisons between samples. After Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on the expression profiles identified using Short Time-series Expression Miner, we found that the metabolic process in the biological process, as well as the pathways of phenylpropanoid biosynthesis and plant hormone signal transduction, participated significantly in the response to VW. Gene functional annotation and expression quantity analysis indicated the important roles of the phenylpropanoid metabolic pathway and oxidation-reduction process in response to VW, which also provided plenty of candidate genes related to plant resistance. CONCLUSIONS: This study concentrates on the preliminary response to V991 infection by comparing the VW-resistant CSSL and its VW-susceptible recurrent parent. Not only do our findings facilitate the culturing of new resistant varieties with high yield and superior performance, but they also broaden our understanding of the mechanisms of cotton resistance to VW.
Assuntos
Cromossomos de Plantas/genética , Gossypium/genética , Gossypium/microbiologia , Transcriptoma/genética , Verticillium/patogenicidade , Regulação da Expressão Gênica de Plantas/genéticaRESUMO
Fiber quality and yield are important traits of cotton. Quantitative trait locus (QTL) mapping is a prerequisite for marker-assisted selection (MAS) in cotton breeding. To identify QTLs for fiber quality and yield traits, 4 backcross-generation populations (BC1F1, BC1S1, BC2F1, and BC3F0) were developed from an interspecific cross between CCRI36 (Gossypium hirsutum L.) and Hai1 (G. barbadense L.). A total of 153 QTLs for fiber quality and yield traits were identified based on data from the BC1F1, BC1S1, BC2F1 and BC3F0 populations in the field and from the BC2F1 population in an artificial disease nursery using a high-density genetic linkage map with 2292 marker loci covering 5115.16 centimorgans (cM) from the BC1F1 population. These QTLs were located on 24 chromosomes, and each could explain 4.98-19.80% of the observed phenotypic variations. Among the 153 QTLs, 30 were consistent with those identified previously. Specifically, 23 QTLs were stably detected in 2 or 3 environments or generations, 6 of which were consistent with those identified previously and the other 17 of which were stable and novel. Ten QTL clusters for different traits were found and 9 of them were novel, which explained the significant correlations among some phenotypic traits in the populations. The results including these stable or consensus QTLs provide valuable information for marker-assisted selection (MAS) in cotton breeding and will help better understand the genetic basis of fiber quality and yield traits, which can then be used in QTL cloning.
Assuntos
Fibra de Algodão , Gossypium/genética , Locos de Características Quantitativas , Cruzamentos Genéticos , Gossypium/embriologia , Sementes/genéticaRESUMO
Chromosome segment substitution lines (CSSLs) are ideal materials for identifying genetic effects. In this study, CSSL MBI7561 with excellent fiber quality that was selected from BC4F3:5 of CCRI45 (Gossypium hirsutum) × Hai1 (Gossypium barbadense) was used to construct 3 secondary segregating populations with 2 generations (BC5F2 and BC5F2:3). Eighty-one polymorphic markers related to 33 chromosome introgressive segments on 18 chromosomes were finally screened using 2292 SSR markers which covered the whole tetraploid cotton genome. A total of 129 quantitative trait loci (QTL) associated with fiber quality (103) and yield-related traits (26) were detected on 17 chromosomes, explaining 0.85-30.35% of the phenotypic variation; 39 were stable (30.2%), 53 were common (41.1%), 76 were new (58.9%), and 86 had favorable effects on the related traits. More QTL were distributed in the Dt subgenome than in the At subgenome. Twenty-five stable QTL clusters (with stable or common QTL) were detected on 22 chromosome introgressed segments. Finally, the 6 important chromosome introgressed segments (Seg-A02-1, Seg-A06-1, Seg-A07-2, Seg-A07-3, Seg-D07-3, and Seg-D06-2) were identified as candidate chromosome regions for fiber quality, which should be given more attention in future QTL fine mapping, gene cloning, and marker-assisted selection (MAS) breeding.
Assuntos
Cromossomos de Plantas/genética , Gossypium/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico/métodos , Fibra de Algodão , Cruzamentos Genéticos , Genoma de Planta/genética , FenótipoRESUMO
BACKGROUND: How to develop new cotton varieties possessing high yield traits of Upland cotton and superior fiber quality traits of Sea Island cotton remains a key task for cotton breeders and researchers. While multiple attempts bring in little significant progresses, the development of Chromosome Segment Substitution Lines (CSSLs) from Gossypium barbadense in G. hirsutum background provided ideal materials for aforementioned breeding purposes in upland cotton improvement. Based on the excellent fiber performance and relatively clear chromosome substitution segments information identified by Simple Sequence Repeat (SSR) markers, two CSSLs, MBI9915 and MBI9749, together with the recurrent parent CCRI36 were chosen to conduct transcriptome sequencing during the development stages of fiber elongation and Secondary Cell Wall (SCW) synthesis (from 10DPA and 28DPA), aiming at revealing the mechanism of fiber development and the potential contribution of chromosome substitution segments from Sea Island cotton to fiber development of Upland cotton. RESULTS: In total, 15 RNA-seq libraries were constructed and sequenced separately, generating 705.433 million clean reads with mean GC content of 45.13% and average Q30 of 90.26%. Through multiple comparisons between libraries, 1801 differentially expressed genes (DEGs) were identified, of which the 902 up-regulated DEGs were mainly involved in cell wall organization and response to oxidative stress and auxin, while the 898 down-regulated ones participated in translation, regulation of transcription, DNA-templated and cytoplasmic translation based on GO annotation and KEGG enrichment analysis. Subsequently, STEM software was performed to explicate the temporal expression pattern of DEGs. Two peroxidases and four flavonoid pathway-related genes were identified in the "oxidation-reduction process", which could play a role in fiber development and quality formation. Finally, the reliability of RNA-seq data was validated by quantitative real-time PCR of randomly selected 20 genes. CONCLUSIONS: The present report focuses on the similarities and differences of transcriptome profiles between the two CSSLs and the recurrent parent CCRI36 and provides novel insights into the molecular mechanism of fiber development, and into further exploration of the feasible contribution of G. barbadense substitution segments to fiber quality formation, which will lay solid foundation for simultaneously improving fiber yield and quality of upland cotton through CSSLs.