Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Immunology ; 172(2): 235-251, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38425094

RESUMO

Myocarditis has emerged as a rare but lethal immune checkpoint inhibitor (ICI)-associated toxicity. However, the exact mechanism and the specific therapeutic targets remain underexplored. In this study, we aim to characterise the transcriptomic profiles based on single-cell RNA sequencing from ICI-related myocarditis. Peripheral blood mononuclear cell (PBMC) samples were collected from four groups for single-cell RNA sequencing: (1) patients with newly diagnosed lung squamous cell carcinoma before treatment (Control Group); (2) patients with lung squamous cell carcinoma with PD-1 inhibitor therapy who did not develop myocarditis (PD-1 Group); (3) patients during fulminant ICI-related myocarditis onset (Myocarditis Group); and (4) Patients with fulminant ICI-related myocarditis during disease remission (Recovery Group). Subcluster determination, functional analysis, single-cell trajectory and cell-cell interaction analysis were performed after scRNA-seq. Bulk-RNA sequencing was performed for further validation. Our results revealed the diversity of cellular populations in ICI-related myocarditis, marked by their distinct transcriptional profiles and biological functions. Monocytes, NKs as well as B cells contribute to the regulation of innate immunity and inflammation in ICI-related myocarditis. With integrated analysis of scRNA-seq and bulk sequencing, we identified S100A protein family as a potential serum marker for ICI-related myocarditis. Our study has created a cell atlas of PBMC during ICI-related myocarditis, which would shed light on the pathophysiological mechanism and potential therapeutic targets of ICI-related myocarditis in continuous exploration.


Assuntos
Inibidores de Checkpoint Imunológico , Imunidade Inata , Neoplasias Pulmonares , Miocardite , Análise de Célula Única , Humanos , Miocardite/imunologia , Miocardite/induzido quimicamente , Miocardite/genética , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/genética , Transcriptoma , Análise de Sequência de RNA , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Idoso , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Perfilação da Expressão Gênica
2.
J Hepatol ; 81(1): 135-148, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38460791

RESUMO

BACKGROUND & AIMS: NOTCH signaling in liver sinusoidal endothelial cells (LSECs) regulates liver fibrosis, a pathological feature of chronic liver diseases. POFUT1 is an essential regulator of NOTCH signaling. Here, we investigated the role of LSEC-expressed POFUT1 in liver fibrosis. METHODS: Endothelial-specific Pofut1 knockout mice were generated and experimental liver fibrosis was induced by chronic carbon tetrachloride exposure or common bile duct ligation. Liver samples were assessed by ELISA, histology, electron microscopy, immunostaining and RNA in situ hybridization. LSECs and hepatic stellate cells (HSCs) were isolated for gene expression analysis by RNA sequencing, qPCR, and western blotting. Signaling crosstalk between LSECs and HSCs was investigated by treating HSCs with supernatant from LSEC cultures. Liver single-cell RNA sequencing datasets from patients with cirrhosis and healthy individuals were analyzed to evaluate the clinical relevance of gene expression changes observed in mouse studies. RESULTS: POFUT1 loss promoted injury-induced LSEC capillarization and HSC activation, leading to aggravated liver fibrosis. RNA sequencing analysis revealed that POFUT1 deficiency upregulated fibrinogen expression in LSECs. Consistently, fibrinogen was elevated in LSECs of patients with cirrhosis. HSCs treated with supernatant from LSECs of Pofut1 null mice showed exacerbated activation compared to those treated with supernatant from control LSECs, and this effect was attenuated by knockdown of fibrinogen or by pharmacological inhibition of fibrinogen receptor signaling, altogether suggesting that LSEC-derived fibrinogen induced the activation of HSCs. Mechanistically, POFUT1 loss augmented fibrinogen expression by enhancing NOTCH/HES1/STAT3 signaling. CONCLUSIONS: Endothelial POFUT1 prevents injury-induced liver fibrosis by repressing the expression of fibrinogen, which functions as a profibrotic paracrine signal to activate HSCs. Therapies targeting the POFUT1/fibrinogen axis offer a promising strategy for the prevention and treatment of fibrotic liver diseases. IMPACT AND IMPLICATIONS: Paracrine signals produced by liver vasculature play a major role in the development of liver fibrosis, which is a pathological hallmark of most liver diseases. Identifying those paracrine signals is clinically relevant in that they may serve as therapeutic targets. In this study, we discovered that genetic deletion of Pofut1 aggravated experimental liver fibrosis in mouse models. Moreover, fibrinogen was identified as a downstream target repressed by Pofut1 in liver endothelial cells and functioned as a novel paracrine signal that drove liver fibrosis. In addition, fibrinogen was found to be relevant to cirrhosis and may serve as a potential therapeutic target for this devastating human disease.


Assuntos
Células Endoteliais , Fibrinogênio , Células Estreladas do Fígado , Cirrose Hepática , Camundongos Knockout , Animais , Humanos , Masculino , Camundongos , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/efeitos adversos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fibrinogênio/metabolismo , Fibrinogênio/biossíntese , Fibrinogênio/genética , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Receptores Notch/metabolismo , Receptores Notch/fisiologia , Transdução de Sinais
3.
Rev Cardiovasc Med ; 25(5): 151, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39076495

RESUMO

Background: The coronary no-reflow (NR) phenomenon is an independent predictor of major adverse cardiac events (MACEs). This study aimed to establish a clinical and comprehensive nomogram for predicting NR in acute myocardial infarction (AMI) patients after primary percutaneous coronary intervention (pPCI). Methods: The multivariable logistic regression analysis was performed to determine the NR-related factors. A nomogram was established via several clinical and biochemical factors, and the performance was evaluated via discrimination, calibration, and clinical factors. Results: The study consisted of 3041 AMI patients after pPCI, including 2129 patients in the training set (70%) and 912 patients in the validation set (30%). The NR event was 238 in the training set and 87 in the validation set. The level of N-terminal prohormone B-type natriuretic peptide (NT-proBNP), basophil count (BASO), neutrophil count (NEUBC), D-dimer, hemoglobin (Hb), and red blood cell distribution width (RDW.CV) in NR patients showed statistically significant differences. In the training set, the C-index was 0.712, 95% CI 0.677 to 0.748. In the validation set, the C-index was 0.663, 95% CI 0.604 to 0.722. Conclusions: A nomogram that may predict NR in AMI patients undergoing pPCI was established and validated. We hope this nomogram can be used for NR risk assessment and clinical decision-making and significantly prevent potentially impaired reperfusion associated with NR.

4.
Nutr Metab Cardiovasc Dis ; 34(5): 1146-1156, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38220508

RESUMO

BACKGROUND AND AIMS: Carotid atherosclerosis is associated with an elevated risk of stroke in patients with chronic kidney disease. However, the molecular basis for the incidence of carotid atherosclerosis in patients with CKD is poorly understood. Here, we investigated whether circulating miR-423-5p is a crucial link between CKD and carotid atherosclerosis. METHODS AND RESULTS: We recruited 375 participants for a cross-sectional study to examine the occurrence of carotid plaque and plaque thicknesses. Levels of miR-423-5p were determined by qPCR analysis. We found that non-dialysis CKD patients had higher circulating exosomal and plasma miR-423-5p levels, and dialysis-dependent patients had lower miR-423-5p levels than non-dialysis CKD patients. After excluding for the influence of dialysis patients, linear regression analysis indicated that levels of circulating miR-423-5p are negatively correlated with eGFR (P < 0.001). Higher plasma miR-423-5p levels were associated with the incidence and severity of carotid plaques. In parallel, we constructed a murine model of CKD with a 5/6 nephrectomy protocol and performed RNA sequencing studies of aortic tissues. Consistent with these findings in CKD patients, circulating exosomal miR-423-5p levels in CKD mice were elevated. Furthermore, our RNA-seq studies indicated that the putative target genes of miR-423-5p were related to oxidative stress functions for aorta of CKD mice. CONCLUSION: Levels of miR-423-5p are associated with the presence and severity of carotid plaque in CKD. Data from our mouse model suggests that miR-423-5p likely influences gene expression programs related to oxidative stress in aorta of CKD mice.


Assuntos
Doenças das Artérias Carótidas , MicroRNAs , Placa Aterosclerótica , Insuficiência Renal Crônica , Humanos , Animais , Camundongos , Estudos Transversais , Doenças das Artérias Carótidas/epidemiologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/complicações , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , MicroRNAs/metabolismo
5.
Cell Host Microbe ; 32(2): 191-208.e9, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38237593

RESUMO

Aspirin-related gastrointestinal damage is of growing concern. Aspirin use modulates the gut microbiota and associated metabolites, such as bile acids (BAs), but how this impacts intestinal homeostasis remains unclear. Herein, using clinical cohorts and aspirin-treated mice, we identified an intestinal microbe, Parabacteroides goldsteinii, whose growth is suppressed by aspirin. Mice supplemented with P. goldsteinii or its BA metabolite, 7-keto-lithocholic acid (7-keto-LCA), showed reduced aspirin-mediated damage of the intestinal niche and gut barrier, effects that were lost with a P. goldsteinii hdhA mutant unable to generate 7-keto-LCA. Specifically, 7-keto-LCA promotes repair of the intestinal epithelium by suppressing signaling by the intestinal BA receptor, farnesoid X receptor (FXR). 7-Keto-LCA was confirmed to be an FXR antagonist that facilitates Wnt signaling and thus self-renewal of intestinal stem cells. These results reveal the impact of oral aspirin on the gut microbiota and intestinal BA metabolism that in turn modulates gastrointestinal homeostasis.


Assuntos
Aspirina , Microbioma Gastrointestinal , Camundongos , Animais , Aspirina/farmacologia , Ácidos e Sais Biliares , Receptores Citoplasmáticos e Nucleares , Homeostase
6.
Sci Rep ; 14(1): 1733, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242883

RESUMO

Bile acids play important roles in lipid metabolism and glucose homeostasis. Limited research exist on the association between serum total bile acid (TBA) levels and major adverse cardiovascular events (MACEs) in patients with acute coronary syndrome (ACS), particularly those with comorbid type 2 diabetes mellitus (T2DM). This study was conducted to examine the relationship between baseline serum TBA level and T2DM status in patients with ACS after percutaneous coronary intervention (PCI) and to identify the predictive value of TBA levels for a 2-year risk of MACEs. 425 ACS patients underwent PCI were recruited and divided into three groups based on baseline serum TBA concentration. An analysis of the association between the T2DM status and baseline serum TBA levels was conducted using univariate linear regression and multivariate linear regression. The predictive relevance of serum TBA levels was evaluated using the receiver operating characteristic (ROC) curve and Cox regression. Kaplan-Meier curves were employed to analyze the differences among groups in predicting MACEs over a 2-year follow-up period. Baseline serum TBA levels were higher in ACS patients who were diagnosed with T2DM (the median 3.6 µmol/L) than those without T2DM (the median 3.0 µmol/L). T2DM status in ACS patients was positively correlated with baseline serum TBA concentrations (ß: 1.7, 95% confidence interval [CI] 0.3-3.0), particularly in the male (ß: 2.0, 95% CI 0.3-3.6) and 50-69-year-old (ß: 2.5, 95% CI 0.6-4.4) populations. The areas under the ROC curve of baseline serum TBA levels predicted MACEs in ACS and ACS-T2DM patients following PCI were 0.649 (95% CI 0.595-0.703) and 0.783 (95% CI 0.685-0.881), respectively. Furthermore, Cox regression analysis showed that baseline serum TBA level was associated with the occurrence of MACEs in patients with ACS after PCI over a 2-year follow-up period, especially in those diagnosed with T2DM, whose baseline TBA concentration was lower than 10.0 µmol/L. ACS Patients with T2DM had higher serum TBA levels. TBA level at baseline was an independent predictor of MACEs in ACS patients who underwent PCI, especially with comorbid T2DM.


Assuntos
Síndrome Coronariana Aguda , Diabetes Mellitus Tipo 2 , Intervenção Coronária Percutânea , Humanos , Masculino , Intervenção Coronária Percutânea/efeitos adversos , Diabetes Mellitus Tipo 2/complicações , Estudos Prospectivos , Coração , Fatores de Risco
7.
iScience ; 27(1): 108722, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38226173

RESUMO

Epigenetic regulation of heart development remains incompletely understood. Here we show that LSD1, a histone demethylase, plays a crucial role in regulating cardiomyocyte proliferation during heart development. Cardiomyocyte-specific deletion of Lsd1 in mice inhibited cardiomyocyte proliferation, causing severe growth defect of embryonic and neonatal heart. In vivo RNA-seq and in vitro functional studies identified Cend1 as a target suppressed by LSD1. Lsd1 loss resulted in elevated Cend1 transcription associated with increased active histone mark H3K4me2 at Cend1 promoter. Cend1 knockdown relieved the cell-cycle arrest and proliferation defect caused by LSD1 inhibition in primary rat cardiomyocytes. Moreover, genetic deletion of Cend1 rescued cardiomyocyte proliferation defect and embryonic lethality in Lsd1 null embryos. Consistently, LSD1 promoted the cell cycle of cardiomyocytes derived from human-induced pluripotent stem cells by repressing CEND1. Together, these findings reveal an epigenetic regulatory mechanism involving the LSD1-CEND1 axis that controls cardiomyocyte proliferation essential for murine heart development.

8.
EClinicalMedicine ; 69: 102486, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38370536

RESUMO

Background: Limited data exists on how early-life weight changes relate to metabolic syndrome (MetS) risk in midlife. This study examines the association between long-term trajectories of body mass index (BMI), its variability, and MetS risk in Chinese individuals. Methods: In the Hanzhong Adolescent Hypertension study (March 10, 1987-June 3, 2017), 1824 participants with at least five BMI measurements from 1987 to 2017 were included. Using group-based trajectory modeling, different BMI trajectories were identified. BMI variability was assessed through standard deviation (SD), variability independent of the mean (VIM), and average real variability (ARV). Logistic regression analyzed the relationship between BMI trajectory, BMI variability, and MetS occurrence in midlife (URL: https://www.clinicaltrials.gov; Unique identifier: NCT02734472). Findings: BMI trajectories were categorized as low-increasing (34.4%), moderate-increasing (51.8%), and high-increasing (13.8%). Compared to the low-increasing group, the odds ratios (ORs) [95% CIs] for MetS were significantly higher in moderate (4.27 [2.63-6.91]) and high-increasing groups (13.11 [6.30-27.31]) in fully adjusted models. Additionally, higher BMI variabilities were associated with increased MetS odds (ORs for SDBMI, VIMBMI, and ARVBMI: 2.30 [2.02-2.62], 1.22 [1.19-1.26], and 4.29 [3.38-5.45]). Furthermore, BMI trajectories from childhood to adolescence were predictive of midlife MetS, with ORs in moderate (1.49 [1.00-2.23]) and high-increasing groups (2.45 [1.22-4.91]). Lastly, elevated BMI variability in this period was also linked to higher MetS odds (ORs for SDBMI, VIMBMI, and ARVBMI: 1.24 [1.08-1.42], 1.00 [1.00-1.01], and 1.21 [1.05-1.38]). Interpretation: Our study suggests that both early-life BMI trajectories and BMI variability could be predictive of incident MetS in midlife. Funding: This work was supported by the National Natural Science Foundation of China No. 82070437 (J.-J.M.), the Clinical Research Award of the First Affiliated Hospital of Xi'an Jiaotong University of China (No. XJTU1AF-CRF-2022-002, XJTU1AF2021CRF-021, and XJTU1AF-CRF-2023-004), the Key R&D Projects in Shaanxi Province (Grant No. 2023-ZDLSF-50), the Chinese Academy of Medical Sciences & Peking Union Medical College (2017-CXGC03-2), and the International Joint Research Centre for Cardiovascular Precision Medicine of Shaanxi Province (2020GHJD-14).

9.
Cell Metab ; 36(2): 408-421.e5, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38325336

RESUMO

Statins are currently the most common cholesterol-lowering drug, but the underlying mechanism of statin-induced hyperglycemia is unclear. To investigate whether the gut microbiome and its metabolites contribute to statin-associated glucose intolerance, we recruited 30 patients with atorvastatin and 10 controls, followed up for 16 weeks, and found a decreased abundance of the genus Clostridium in feces and altered serum and fecal bile acid profiles among patients with atorvastatin therapy. Animal experiments validated that statin could induce glucose intolerance, and transplantation of Clostridium sp. and supplementation of ursodeoxycholic acid (UDCA) could ameliorate statin-induced glucose intolerance. Furthermore, oral UDCA administration in humans alleviated the glucose intolerance without impairing the lipid-lowering effect. Our study demonstrated that the statin-induced hyperglycemic effect was attributed to the Clostridium sp.-bile acids axis and provided important insights into adjuvant therapy of UDCA to lower the adverse risk of statin therapy.


Assuntos
Intolerância à Glucose , Inibidores de Hidroximetilglutaril-CoA Redutases , Resistência à Insulina , Microbiota , Humanos , Animais , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon , Intolerância à Glucose/tratamento farmacológico , Ácidos e Sais Biliares , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/uso terapêutico
10.
MedComm (2020) ; 4(6): e438, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38116064

RESUMO

Since the four working groups of the Chinese Society of Cardiology issued first expert consensus on coronary microvascular diseases (CMVD) in 2017, international consensus documents on CMVD have increased rapidly. Although some of these documents made preliminary recommendations for the diagnosis and treatment of CMVD, they did not provide classification of recommendations and levels of evidence. In order to summarize recent progress in the field of CMVD, standardize the methods and procedures of diagnosis and treatment, and identify the scientific questions for future research, the four working groups of the Chinese Society of Cardiology updated the 2017 version of the Chinese expert consensus on CMVD and adopted a series of measures to ensure the quality of this document. The current consensus has raised a new classification of CMVD, summarized new epidemiological findings for different types of CMVD, analyzed key pathological and molecular mechanisms, evaluated classical and novel diagnostic technologies, recommended diagnostic pathways and criteria, and therapeutic strategies and medications, for patients with CMVD. In view of the current progress and knowledge gaps of CMVD, future directions were proposed. It is hoped that this expert consensus will further expedite the research progress of CMVD in both basic and clinical scenarios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA