Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2307275, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38050946

RESUMO

The successful utilization of silicon nanoparticles (Si-NPs) to enhance the performance of Li-ion batteries (LIBs) has demonstrated their potential as high-capacity anode materials for next-generation LIBs. Additionally, the availability and relatively low cost of sodium resources have a significant influence on developing Na-ion batteries (SIBs). Despite the unique properties of Si-NPs as SIBs anode material, limited study has been conducted on their application in these batteries. However, the knowledge gained from using Si-NPs in LIBs can be applied to develop Si-based anodes in SIBs by employing similar strategies to overcome their drawbacks. In this review, a brief history of Si-NPs' usage in LIBs is provided and discuss the strategies employed to overcome the challenges, aiming to inspire and offer valuable insights to guide future research endeavors.

2.
Materials (Basel) ; 16(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687583

RESUMO

Silicon has been proven to be one of the most promising anode materials for the next generation of lithium-ion batteries for application in batteries, the Si anode should have high capacity and must be industrially scalable. In this study, we designed and synthesised a hollow structure to meet these requirements. All the processes were carried out without special equipment. The Si nanoparticles that are commercially available were used as the core sealed inside a TiO2 shell, with rationally designed void space between the particles and shell. The Si@TiO2 were characterised using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The optimised hollow-structured silicon nanoparticles, when used as the anode in a lithium-ion battery, exhibited a high reversible specific capacity over 630 mAhg-1, much higher than the 370 mAhg-1 from the commercial graphite anodes. This excellent electrochemical property of the nanoparticles could be attributed to their optimised phase and unique hollow nanostructure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA